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I. INTRODUCTION

This final report for the Science Applications

International Corporation (SAIC) contract "Dynamics of High

Temperature Plasmas", contract number N00014-83-C-2138,

covers the technical period 15 March 1983 to I August 1985.

We present the results of studies in several topics of

importance for the understanding of high temperature

plasmas, performed in support of programs of the Plasma

* Theory Branch (CODE 4790) of the Plasma Physics Division at

the Naval Research Laboratory (NRL).

* In the -following sections we describe briefly the tasks

performed. Details are included in the various Appendices

to this report. The topics discussed include: II. Envelope

Model for Beam Transport and Focusing in An Induction Linac,

III. High Current Accelerators (A), IV. Free-Electron Laser

Studies, V. High Current Accelerators (B), VI. Laser Beat

Wave Particle Acceleration, VII. Orbitron Maser Design,

VIII. Electron Beam Stability in the Modified Betatron, IX.

Relativistic Electron Beam Diode Design, and X. Free

Electron Laser Applications to XUV Production and Particle

Acceleration.
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I I. ENVELOPE MODEL FOR BEAM TRANSPORT AND FOCUSING

IN AN INDUCTION LINAC

The NBS induction linear accelerator produces an

electron beam of energy 800 key (7-2.5), beam current Ib- 800

A, beam radius rb-0.5 cm, and beam pulsewidth Tb- 2  Ls.

* Experiments at NRL have used this beam to drive a

free-electron laser, where the wiggler field is Bw=0.1-1.0

kG, the straight section is Lw=60 cm, the wiggler wavelength

is Xw=3 cm, and the solenoidal focusing field is B.=1-5 kG.

With these parameters, peak output power -60 MW is possible

with a theoretical efficiency -10%, at an output wavelength

of X-3-4 mm (Xw/272).

To realize these goals, it is necessary to transport the

electron beam through the induction linac and match it to

the FEL wiggler. FIgure 1 shown a schematic drawing of the

induction linac, showing the graded diode region, the

locations of the seven focusing coils, the two accelerating

b gaps, and the iron cores of the induction modules. Figure 2

illustrates the FEL configuration with its solenoidal

focusing and wiggler fields. The last (seventh) focusing

coil of the induction linac is also shown on the figure, as

well as a plot of the wiggler field on-axis. Three

different approaches to the transport problem have been

utilized:

2 Ibe"eL.!vacaIeoPYm



* o SLAC Gun code -- S. Slinker,

o Numerical Simulation -- Austin Research Associates

(ARA),

* o Beam Envelope Calculations -- this report

The beam envelope equation may be expressed as

R +n 2R - U/R -E 2/R = 0,n
where

2244 2 22

* 2 7 2(2+72 )/(4047') + n 2/(4 27 c 2
Oz

U = 20/7 
2

Oy = IbfkA]/17

En= 07c = 0.2(IbMAI)

R = (B7) rb

7' = d7/dz = -IeIEz (z)/mc2

0oz= lelB (Z)/mc
2

Oz z

This equation will apply under the assumption that the

canonical angular momentum (P9) of the electrons is zero,

the transverse density and current density of the beam are

uniform, the beam and fields are axisymmetric (a/8 = 0),

the axial fields are independent of r, and the radial fields

are linear in r. In addition, the paraxial approximation,

Ivzl Ivjl, is used for the beam. The radial fields are

3



* expressed as

E= -(r/2)E,'+ [self-fields)

Br= -(r/2)B z "

When the fields have no z dependance, as inside a long

solenoid, the equilibrium envelope equation, R" = 0, may be

solved for the equilibrium beam radius,

rb,eq = (1/'B)(U/2n) 1i +[1 + 4n 2 6n2/U2]1

Small oscillations of the beam radius about this equilibrium

can occur with the frequency, w, given by

2= n2+ U/R 2 + 3E /Re4
eq n eq

Given a solution of the envelope equation, it is

possible to generate "sub-envelopes", which correspond to

nested beam ellipses in phase space, ie. to ellipses with x'

and x scaled in the same ratio as in the original ellipse.

For these ellipses, I/e will oe invariant, since I - x2 and

- xx' and x x'. The sub-envelope solutions can be used

to determine the acceptance of any aperture in the

beam-line.

If the beam is adiabatically compressed by a

longitudinal magnetic field, its envelope will follow a flux

surface, given by r2 Bz constant. Unfortunately, the field

4



coils of the induction linac do not readily lend themselves

to this simple solution.

The accelerating gaps of the induction linac are

modeled as sections of pipe of length L and radius a with a

gap (of width d) located at L/2. The axial electric field

is assumed to vanish at z=O and z=L, as well as along the

10 pipe wall. In the gap the Ez field at r=a is assumed to be

uniform, E0 . The Ez field may then be expressed as

SEz =I A(r) sin(knZ)

where k nv/L,
n

SAn (a) = (2E0d/L)[sin(k nd/2)/(k nd/2)]sin(nu/2)

and

A n(r) A n(a) I (k nr)/I (k na)

The on-axis field due to each field coil is calculated

from a simple prescription. Let the coil have inner radius

* rl , outer radius r2, length 2t, and be centered at zo . The

field at the center of such a coil is given by

B z(z 0 NIF(a,O)/[2r I(a-i)]

2 2

F(a,fl) =(4vfl/1O)1n((cz+V/(a +02][+~(1.2

where cf=r 2 /r 1 , 0=t/rL, N is the number of turns (assumed

5



uniformly wound), and I is the current per turn in Amperes.

Since the on-axis field at the center of a uniform coil must

be due to equal contributions from each half of the coil,

the on-axis field at the end of a coil is just half the

field at the center of an identically-constructed coil with

twice the length. The field at any on-axis location, z, may

then be found by a superposition of end fields of coils

having positive and negative current, as shown in Figure 3,

to obtain

B (z) = NI[F(a,O+;)+F(a,R-;)]/[4r R(a-i) 1

z

where = Iz-z 0 1/r1 . Figure 4 shows the field due to each

of the seven coils in the induction linac. The solid line

is the experimentally measured field strength on axis, while

the dots are the calculated field. The agreement is very

good, except for coil #4, which is located close to the

induction cores, and is therefore more sensitive to the

magnetization of the cores.

To correct for the magnetization of the cores, the

magnetic field on axis was measured with no coils energized,

after running the field coils for some time. The resulting

residual Bz profile on-axis is shown in Figure 5. This

field has been digitized and is used as a correction for the

magnetic field in the envelope equations.

Figure 6 shows the complete on-axis field profile used

6



* in the code, including a nominally 2 kG solenoid in the

wiggler region. Each field coil in the model is treated as

a module so that once the fields have been calculated, it

* becomes a simple matter to redo the calculation with

particular coils shifted along the axis.

The solution of the envelope equation for this field

* profile is shown in Figure 7. The axial locations of the

field coils is shown at the top of the figure. For this run

a 400 keV beam was injected and a single gap was energized

* with 300 kV, at the position marked by "G". The wall of the

guide tube is also shown on the figure. (Note that the

scales of the R and Z axes distort the shape of the wall).

* The envelope solution is also plotted, and displays some

rather violent oscillations before entering the wiggler

region. These results used r'=0 as the initial condition at

* the anode plane.

The ARA simulations have been used to model the diode

region, and to obtain the entrance angle, r', for

initializing the envelope equations. The envelope in this

case (shown in Figure 8) displays oscillations which

qualitatively agree with those in the simulation. The outer

beam envelope hits the wall near the first gap, where the

ARA simulation calculates a scrape-off of 135 A of the 718 A

beam current.

It is also possible to initialize a matched beam in the

7
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* wiggler solenoid, and to propagate the envelope backward,

from right to left, as shown in Figure 9 for a beam with En

= 0.260 rad-cm and req=0.7 04 cm in the wiggler solenoid. In

this case, the code determines the radial location and angle

at which the beam arrives at the anode plane. Since the

beam angle at the anode is difficult to control experi-

mentally, however, this approach proved of little benefit.

The experimental parameters and measurements used in

this model were suppled by R. Lucey, often after making

measurements specifically for this purpose. The code was

transferred to the FEL experimenters (Lucey and Pasour) who

used it as a tool in adjusting the focusing system to guide

the beam to their FEL.'
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Figure 4. On-Axis Magnetic Field Profile for Each of the ,

Induction Linac Focusing Coils
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!"
III. HIGH-CURRENT ACCELERATORS (A)

The NRL Advanced Accelerator Project has embarked on

* the task of developing a compact, high-current (_10 kA)

accelerator. The first effort in this direction is the

modified betatron accelerator, which is a conventional

* betatron focusing system, augmented by a toroidal magnetic

field to control the self-forces of an intense electron

beam. In parallel with the mainline program on the modified

* betatron, NRL has supported a modest effort to explore other

configurations, such as the racetrack induction

accelerator 2, the stellatron3 , and the bumpy-torus

* betatron4 . These alternative approaches have in common the

use of strong-focusing fields to increase the tolerance of

the accelerator to mismatch between the vertical magnetic

• field and the electron energy. In the language of

accelerator designers, the strong focusing increases the

"momentum compaction" of the accelerator, where the momentum

*compaction is the ratio of momentum mismatch to beam

displacement. We describe this property of the

strong-focused accelerator in terms of the tolerance

"bandwidth", which is the relative energy (or momentum)

mismatch which can be tolerated before a beam initialized on

the accelerator reference orbit will hit the inner wall of

the vacuum vessel. For weak-focused accelerators, such as

18
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* the betatron or the modified betatron, the bandwidth is

approximately

&,/0 = a/(4r 0)

where a/r0 is the inverse aspect ratio of the torus. For

a/r0 -0.1, the bandwidth is approximately 2.5%. The

* strong-focused accelerators, on the other hand, can readily

achieve bandwidth in excess of 50%. Although it is possible

to use this property of strong-focused accelerators to

* design fixed-field focusing systems operating at very large

mismatch (AI0O%)5 , such devices will be limited to modest

beam energy and relatively poor beam quality. The addition

*of strong focusing fields to a betatron configuration will

enhance the bandwidth of that accelerator while operating

near a matched field conditon. The enhanced bandwidth, in

* turn, relaxes costly requirements on field uniformity,

injector ripple and shot-to-shot reproducibility.

Recognizing these potential advantages of strong-focused

ro betatrons, two types of strong-focusing fields have been

investigated in some detail, with research papers reprinted

as appendices to this final report. The first configuration

Vis the 1=2 stellarator field, which is a rotating quadrupole

field, analogous to alternate-gradient strong-focusing

configurations used in most high-energy synchrotrons. The

second configuration is a bumpy-torus field, which is an 1=0

19



stellarator configuration. Both of these configurations

provide an alternating transverse magnetic gradient at the

beam reference orbit; the alternating transverse gradient is

the defining characteristic of a strong-focused accelerator.

All other f-number stellarator fields are weak-focusing.

The research papers in Appendices A and B demonstrate

* the single-particle orbit stability of these configurations

and show that enhanced bandwidth ( 50%) can be obtained for

reasonable focusing field strength. They are titled,

O respectively, "High current Betatron with Stellarator

Fields", C. W. Roberson, A.A. Mondelli, and D. Chernin,

Phys. Rev. Lett. 50, .507 (1983) and "A Bumpy-Torus

* Betatron", D. Chernin, A Mondelli, and C. Roberson, Phys.

Fluids 27, 2378 (1984).

L

20



0

IV. FREE-ELECTRON LASER STUDIES

Analysis of the Free Electron Laser (FEL) has proceeded

on a number of levels and included analyses both of the

linear gain and nonlinear efficiency in both one and

three-dimensions. The fundamental configuration analyzed

describes the propagation of a relativistic electron beam

through a combined helical wiggler and axial guide magnetic

field. Of particular interest is the effect of the axial

guide magnetic field on the FEL interaction, since this is

the configuration relevant to the experimental program at

the Naval Research Laboratory. This work has been described

in Appendices C ("Design and Operation of Collective

Millimeter-Wave Free-Electron Laser, J. Quantum Elect.

QE-19, 346 (1983)) and D ("Study of Gain, Bandwidth, and

Tunability of a Millimeter-Wave Free-Electron Laser

Operating in the Collective Regime", Phys. Fluids 26, 2683

(1983)).

Previous analysis of the linear growth rate of the FEL

in one-dimension showed substantial enhancements possible

due to a resonant interaction in the presence of an axial

guide field. This occured when the Larmor period due to the

axial magnetic field approached the wiggler period. In view

of this result, a one-dimensional particle simulation code

was developed to study the nonlinear aspects of the

21
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* interaction with the goal of determining saturated power

levels for an FEL amplifier. Results of the nonlinear

analysis showed substantial enhancements to be possible in

• the presence of an axial guide field. For the model

parameters chosen, efficiency enhancements of greater than

100% over the zero-guide field limit were found. Details of

* this work are included in Appendix E of this report titled

"Nonlinear Analysis of Free-Electron Amplifiers with Axial

Guide Fields", Phys. Rev. A 27, 1977 (1983).

* An anomalous effect on the electrostatic beam

space-charge has also been demonstrated in the presence of

an axial .guide field. In the collective Raman regime the

* FEL interaction procceds by an induced scattering of the

wiggler field (which appears as an electromagnetic wave in

the electron beam frame) and a slow space-charge wave to

* produce the output radiation. This is a three-wave

scattering process. In the absence of an axial guide field,

the beam space-charge waves are stable. However, it has

* been shown that the presence of a strong axial guide

magnetic field can drive the electrostatic space-charge

modes unstable due to a negative-mass type of effect. This

*can have profound consequences for the FEL interaction, and

experimental observations (see Appendix C) show peak output

powers precisely in the unstable space-charge wave regime.

This work is given in detail in Appendix F, titled "Unstable

22
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UU

Electrostatic Beam Modes in Free-Electron Laser Systems",

Phys. Rev. A 28, 1835 (1983).

Having completed the analysis of both the linear and

nonlinear phases of the FEL interaction in one-dimension in

the presence of an axial guide field, attention turned to

the inclusion of three-dimensional effects on the

interaction. To this end, analyses of the linear gain were

conducted during the contract period for a configuration

which consists of the propagation of a relativistic electron

beam through a loss-free cylindrical waveguide in the

presence of helical wiggler and axial guide magnetic fields.

The analysis was performed in both the low-gain Compton and

high-gain collective regimes, and included the effect of the

overlap of the electron beam and the waveguide modes (i.e.,

the filling factor) in a self-consistent manner. As in the

one-dimensional case, substantial enhancements in the linear

gain were found to result from the presence of the axial

guide field. The low-gain Compton regime is documented in

Appendix G, "Three-Dimensional Theory of Free-Electron

Lasers with an Axial Guide Field", J. Quantum Elec. QE-19,

322 (1983). The high-gain collective regime is found in

Appendix H, "Three-Dimensional Theory of the Free-Electron

Laser in the Collective Regime", Phys. Rev. A 28, 3438

(1983).

CFinally, an important application of the theory,

23



* developed during the contract period, was to the design and

interpretation of experimental results obtained by the FEL

amplifier experiment in Code 4740 at the Naval Research

• Laboratory. This work is described in more detail in the

previously referenced Appendices C and D.

24
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V. HIGH CURRENT ACCELERATORS (B)

High energy accelerators that can produce high current

electron beams are rapidly becoming an active area of

research. Among the various schemes of acceleration,

induction accelerators are the most promising. They are

* inherently low impedance devices and are thus suited to

drive high current beams. Induction accelerators are

divided into linear and cyclic. In both cyclic and linear

*devices, the acceleration process is based on the inductive

electric field produced by a time varying magnetic field.

In the linear accelerators, the total change in flux occurs

in one transit time, typically in less than 100 nsec, while

in cyclic accelerators the same change occurs over several

thousand revolutions in a typical time of one msec.

* As a consequence of the slow acceleration, the

accelerated beam must be confined by the focusing magnetic

field over long periods of time and, thus, field errors,

instabilities and radiation losses pose limitations on the

cyclic accelerators. These limitations can be substantialy

relaxed if the acceleration could occur rapidly as in the

linear accelerators. A device has been proposed that

conbines the rapid acceleration of the linear accelerators

and the compactness in size of the cyclic accelerators. It

has been named REBA-TRON (Rapid Electron Beam Accelerator).

25



An extensive numerical and analytical investigation has

been carried out on the beam dynamics of the rebatron

accelerator. The acceleration occurs by a localized, high

gradient electric field produced by convoluted parallel 7'

transmission lines, and beam confinement is achieved by a

strong focusing torsatron magnetic field. The study

indicates that both the bandwidth and the maximum electron

beam current that can be confined by this device is

remarkably high. Details can be found in Appendix I, "Rapid

Electron Beam Accelerators (REBA-TRONS)", NRL Memorandum

Report 5503.

26
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VI. LASER BEAT WAVE PARTICLE ACCELERATION

The acceleration of charged particles to high energy by

"collective" fields in a plasma or in non-neutral particle

rings has been pursued vigorously for some time. The

promise of the delivery of high power (b 1014 watts) by

* modern lasers is a great inducement to generate schemes

which could avail this power for accelerating bursts of

particles to energies in the TeV range and beyond. It is

also becoming apparent that the very successful schemes of

particle acceleration in current use may not be able to push

particle energy much above the TEV level without an enormous

• amplification in cost. Thus the combination of a need for

superhigh energies and the availability of high powered

lasers spawned a recent LANL workshop on "Laser

Accelerationu

One of the concepts presented at the workshop was a

proposal by Tajima and Dawson. Two plane laser waves with

* frequencies w1 and W2, well in excess of the electron plasma

frequency, wp, beat with each other to produce a plasma wave

of frequency W1 -0)2 = Wp and wavelength kl-k 2 = kp. It is

assumed that the amplitude of the beat wave saturates only

by accelerating and trapping a sizeable fraction of the

plasma electrons. Elementary estimates yield a saturated

amplitude, as measured in the laboratory frame, to be Ep =

27



(mc/e)wp or E2/4n = nemec 2 , where ne is the ambient electron

density. This very substantial electric field (10$v/cm for

ne - 10 cm - 3 ) can be employed for accelerating ions or

electrons and the proposal contains optimistic scenarios by

which a phased sequence of acceleration (up to 10 S ) could

get proton energy to 10 1 4eV.

* Unfortunately a plasma supports an uncomfortably large

number of collective modes and although a particular

sequence of interaction between some modes may be postulated

for some process, in general, it is necessary to show that

the sum of all other possible interactions is not

significant for the success of that particular process. In

what follows we outline the following possible limitations

imposed on the Tajima-Dawson scheme. They include

(1) The finite transverse dimensions of the

* laser-plasma interaction region, finite coherence

time and finite correlation length of the laser

beams.

(2) The inhomogeneity of the plasma density.

(3) The effect of the magnetic field caused by current

created by the accelerated electrons.

(4) The depletion of the beat wave energy through other

channels, typically through the parametric pumping

of short wavelength electron and ion fluctuations.

28



(5) The generation of ion sound caused by electron

drifts.

(6) The scattering of laser waves on such ion sound

* waves, the so-called Brillouin scattering.

(7) The actual requirements on phasing for ion

acceleration.

What emerges from this anlysis is that although the

interactions postulated by Tajima and Dawson do occur the

bulk of laser wave energy will be transferred to heating the

plasma with concomitant drop in the efficiency of electron

acceleration. We make no comment on techniques for ion

do accleration by beat waves because the development of this

aspect of the proposal has not proceeded beyond the stage of

elementary wishful thinking. As a first step in the

* investigation of the above issues we have published two

papers, "Excitation of the Plasma Waves in the Laser Beat

Wave Accelerator," Appl. Phys. Lett. 45, 375 (1984) and

"Dynamics of Space-Charge Waves in the Laser Beat Wave

Accelerator", Phys. Fluids 28, 1974 (1985). These papers

are reproduced in this report as Appendix J and Appendix K

respectively.
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VII. ORBITRON MASER DESIGN

In this work we have developed a device concept based on

the orbitron mechanism, originally seen experimentally by

Alexeff. We have also carried out extensive linear theory

analysis to obtain growth lengths for amplifier

* configurations and thresholds for start oscillation for

oscillators. Our device concept, the orbitron maser, is

similar to an electron cyclotron maser that uses axis

encircling electron orbits. However, an orbitron employs an

electric field to radially confine the electrons, instead of

a magnetic field. The device has a coaxial cylindrical

geometry with. the inner conductor held at a positive

potential with respect to the outer conductor, as-shown in

Figure 10. The advantage of such a device is that, like the

gyrotron, it can produce very short wavelength waves (e.g.

X-Imm or less) but it does not require a large magnetic

field. Thus the device can potentially be much cheaper and

* more compact. A paper based on this work is in preparation

with W. Manheimer and J. Burk.

*
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VIII. ELECTRON BEAM STABILITY IN THE MODIFIED BETATRON

In the modified betatron application, previous work 7 has

shown that m b 2 resistive wall modes can be very dangerous

(m = poloidal mode number). However, that analysis was for

zero Larmor radius particles. The question arises as to

whether finite Larmor radius (FLR) effects will stabilize

these modes. In order to gain insight on the general

question of FLR effects on modes of this type we have done a

• treatment, not of the cylindrical geometry resistive wall

mode, but rather of a simpler more analytically tractable

probl'm: namely, FLR effects on diocotron modes in slab

* geometry. The indication of the results of this analysis is

that FLR effects are ineffective in achieving stabilization

of such modes. The basic problem considered was that of the

diocotron instability of an electron layer in which the

typical electron is allowed to have a Larmor radius of the

order of the layer thickness. The principal results of the

analysis are:

(1) An integral equation eigenvalue problem for

* the Fourier transform of the electrostatic

potential is formulated.

(2) An exact analytical solution to the full

problem is given for a special case which,
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however, is general enough to encompass the

full range of ratios of Larmor radius to layer

thickness and of Larmor radius to wavelength.

We believe that the results obtained for this

special case are representative of what

happens in general.

(3) Using the results of the analytical solution

we find the following: (a) Finite Larmor

radius does not stabilize a beam wherein the

guiding centers are localized (i.e., A = 0,

where A is the half-thickness of the guiding

center spread), and instability persists at

all wavelengths, although the growth rates are

reduced. (b) Beams of fixed thickness 8 =

2(A+p) (where p is the Larmor radius) are

destabilized by increasing the relative

fraction 2p/8 of beam thickness due to

gyroradius. (c) For a beam of fixed guiding

center spread &, increasing p is stabilizing,

in that the growth rates are reduced and the

range of unstable wavenumber becomes smaller.

(4) A necessary and sufficient condition for

instability in the form of an energy principle

is derived for the case of a general symmetric

distribution of guiding centers that decreases
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monotonically away from the center of the

layer.

(5) As in the case of zero Larmor radius, the

diocotron instability occurs only if the

component of the propagation direction along

the magnetic field is less than a certain

small critical value.

The paper resulting from this study is titled "Finite

Larmor Radius Diocotron Instability", Phys. Fluids 28, 941

(1985) and is included here as Appendix L.

3
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IX RELATIVISTIC ELECTRON BEAM DIODE DESIGN

In collaboration with Drs. A. Fliflet and W. Manheimer

we have developed several one dimensional methods to aid in

the design of diodes for the production of high current

relativistic electron beams for gyrotron applications.

These methods are (i) relativistic slab model with or

without self By, (ii) non-relativistic conical model without

self B0, (iii) superrelativistic conical model with or

VU without self Bo. These methods, together with electrode

synthesis, were used to obtain approximate designs for two

diodes. The diodes produce 1 MV beams with 2 kA in a field

around 2 kg, to be magnetically compressed to form a 1 GW

beam for a 35 GHz gyrotron oscillator. The Hermannsfeldt

code was used to refine the design to produce a beam with

these parameters and a relatively flat a = p/p profile.

These results are summarized in the enclosed manuscript "One

Dimensional Models for Relativistic Electron Beam Design" to

be submitted for publication. This paper is included here as

Appendix M.

We have begun a collaboration with Drs. W. Manheimer and

S. McDonald to study the eigenmodes of slotted vacuum

gyrotron cavities. The purpose of this study is to find a

cavity design that allows only one mode, i.e., has a high Q

for that mode and rather low Q for all others. We have
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*Q begun to develop a numerical code to solve the Helmholtz

equation in cylindrical geometry for TE or TM modes for

arbitrarily shaped (open or closed) cross section. The

* computational method is based on a boundary-layer integral

formulation of the wave equation; this has the advantage

that only the boundary needs to be discretized (a

one-dimensional set, as opposed to the two-dimensional

interior discretized by standard finite-difference schemes).

.Furthermore, outgoing wave boundary conditions are

automatically included in the free-space Green's function

used in the boundary integral formulation. We have also

proved that the response in such a cavity to an arbitrary

* beam interaction can be represented in terms of these damped

" eigenfunctions. To date, the code has been tested for the

interior and the exterior of a circle and good agreement was

found. The code has been modified to treat walls that

consist of segments of elliptic cylinders displaced by an

arbitrary amount and with a gap of arbitrary size.

Preliminary runs have been performed to determine the Q of

several TE modes that occur in the same frequency range,

namely the (m,n) = (1,4), (3,3), and (6,2) modes.
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X FREE ELECTRON LASER APPLICATIONS TO XUV

PRODUCTION AND PARTICLE ACCELERATION

During this period we have performed studies of the

theory of Free Electron Lasers (FEL) and their applications

to the production of XUV electromagnetic radiation and

particle acceleration to high energy. In the following we

describe the work done on each of these three subjects.

These works are clearly interrelated, and results obtained

in one area can often be useful in the other.

The research on FEL's has made remarkable progress

during the last few years. Very exciting results have been

obtained both theoretically and experimentally. Good

agreement exists between the theory and the experiments

performed up to now. The technology needed for FEL

• development is also making rapid progress. All this leads

us to explore new areas of applications, such as FEL's

operating at short wavelength, in the XUV region of the

spectrum, where commercial lasers are not presently

available and few experimental systems have been operated,

at only a few wavelengths and with very low power.

We have studied the scaling laws for operation of an

FEL in the XUV region and they compare favorably with those

of other possible laser systems. The main requirements for

operation of an FEL in the XUV region are: small electron

37



beam emittance, small energy spread, and large current for a

large FEL gain.

The electron beam emittance must be smaller or on the

order of the wavelength that one wants to produce.

Analyzing the beam emittance produced by present day

accelerators, one comes to the conclusion that the only

accelerator that one can use for wavelengths shorter than

lOOnm is a storage ring. This has led us to the study of

electron storage rings 8 and the emittance limitations in

this system. The first results obtained show that it is

possible to design rings optimized for FEL's applications,

with an emittance small enough to reach FEL operation at

about lOnm.

It is important to notice that the same minimum

emittance requirement is also needed for the next generation

of synchrotron radiation sources, and for the linear

colliders which are now being studied to push the high

energy physics frontier in the TeV region.

To analyse the large gain regime of an FEL we have used

the theory developed recently by Bonifacio, Pellegrini and

Narducci, Optics Communications 50, 373 (1984) entitled,

"Collective Instabilities and High-Gain Regime in a Free

Electron Laser", and included here as Appendix N. These

results allow us to express both the gain parameter and the

condition on the beam energy spread using only one quantity,
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* p, related to the relativistic beam plasma frequency and the

radiation wavelength. A calculation of this quantity, based

on the use of a 750 MeV storage ring to provide the electron

beam, shows that one can expect gains larger than 100% per

pass in a storage ring based FEL oscillator, down to

wavelengths of about 10nm.

One problem in the successful operation of such an

oscillator is posed by the optical cavity mirrors, which

must have a reflectivity not smaller than 50% per reflection

and be capable of withstanding strong incoherent synchrotron

radiation produced by the undulator without a reflectivity

degradation. We have proposed and studied a possible

alternative to the oscillator, the operation of an FEL in

the Self Amplified Spontaneous Emission mode. These results

are given in detail in Appendix 0 entitled "Free Electron

Lasers for the XUV Spectral Region" and have been published

in Nucl. Instr. and Meth. A237, 159 (1985). This mode

requires the use of a long undulator, with a few hundred

periods, based in a storage ring bypass. Its main

advantages are the absence of optical elements and the

possibility of obtaining large peak power, on the order of

several MW, in the 10 to 100 nm region.

As discussed in the previous section we have

reformulated the FEL theory in a form well suited to the

discussion of high gain experiments. This formulation has
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allowed us to introduce a single parameter that must t-

optimized in the design of the storage ring driving the FEL

and has thus allowed a better ring design. We have also

started the analysis of other theoretical problems important

in defining the characteristics of the radiation produced in

the SASE mode, such as the laser startup from noise and the

coherence properties of the radiation produced. The work on

these problems is still in an initial stage and will re

further study.

The FEL can also be used to accelerate particles9. When

used in this mode we call it the Inverse Free Electron Laser

(IFEL). The question of whether the IFEL can be used to

accelerate electrons in the hundred GeV region has been

recently studied (9,10) and it has been shown that this is

possible using a laser waveguide to propagate and keep

focused a high power laser beam. We have done studies on

the characteristics of this waveguide and the possible

tolerances on imperfections and construction errors. The

results show that the waveguide needs to be built to quality

optical standards and that if this can be done one can

propagate a high power laser beam in the guide over a

distance of the order of kilometers with negligible losses.

The work on this problem is continuing, in particular to

study the region where the laser beam enters the guide.

Work has also continued to study the dynamics of the
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particles in the IFEL, with particular attention to the

problem of optimum undulator design to maximize the

acceleration rate and of emittance scaling with energy.

Optimum undulator design leads to an accelerator rate on the

order of 250 MeV/m, up to an energy of about 300 GeV. At

higher energy the synchrotron radiation losses produced by

the wiggling particle motion in the undulator, reduces the

acceleration rate to lower values. The emittance scaling

with energy offers interesting possibilities for producing

high energy-low emittance beams by proper undulator design.

This opens the possibility of using the IFEL as an injector

for a TeV, high luminosity electron-positron collider

system.

We can summarize the previous discussion, by listing

the main topics on which we have worked, in the three areas

of FEL theory, FEL operation in the XUV region, amd IFEL

accelerator concepts.

(a) FEL theory: high gain regime, collective FEL

instability, non linear saturation regime,

radiation self-focusing and diffraction effects,

FEL start-up from noise, coherence properties of

the radiation.

(b) FEL in the XUV region: scaling laws, Self Amplified

Spontaneous Emission operation mode, storage ring

for XUV-FEL, limitations on storage ring emittance
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* and energy spread, design of storage rings for

FEL's, effect of multiple Touschek scattering on

storage ring emittance.

* (c) IFEL: scaling laws for acceleration rate, system

design for maximum acceleration rate, laser

waveguide design, laser waveguide error tolerances,

* longitudinal emittance scaling laws.

S]
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6] By adding an 1 =2 stellarator field to a betatron accelerator, a new configuration is ob-
tained which is capable of accelerating multikiloamp beams and which will tolerate a large
(more than 50%) mismatch between the particle energy and the vertical magnetic field. The
additional field is a twisted quadrupole which acts as a strong-focusing system. This de-
vice has been analyzed both analytically and numerically.

PACS numbers: 52.75.Di, 29.20.FJ

Conventional betatrons' 2 are current limited at The twisted quadrupole field, of period 2v/m,
injection. Recently, efforts have been made to ex- then is written as
tend the current-carrying capability of the beta-
tron. For example, the plasma betatron3 employs B;kE8 (-rsnm+zcosm0),
a toroidal magnetic-field in the direction of the (1)

I particle orbit to contain the plasma. Current in- BakB,(rcosmO+zissinm0), B 6E-B8o,
terest is focused on high-current nonneutral
electron acceleration in modified betatrons. 4 "  where k,B 8 ,Beo are constants, and the betatron

By adding a steilarator field to a cyclic accei- field is
erator, a strong-focusing system7 is obtained
which can sustain high currents and large mis- B, - -nBsz/ro, B. -B,1-n(r,/r0 )], (2)

• match between particle energy and vertical field.
The energy bandwidth relaxes the design require- where B.0 is the vertical field at the reference
ments for the injector and the magnetic field sys- orbit and n is the usual field index.
tern. Unlike fixed-field alternating-gradient beta- We consider the motion of an electron located
trons,8 the stellarator-betatron (or steilatron) in- within a beam whose center is located at r =r o

cludes a strong toroidal field to confine very high +Ar, z =Az; the electron's position is r =r o
- currents. Figure 1 shows a sketch of the stel- +Ar + Or= ro+r, z =Az + 8z a z,. Using a cylin-

latron configuration. drical approximation for the beam self-fields, we
We have quantitatively studied the stellatron

configuration. Our studies have consisted of nu-
merical and single-particle orbit calculations,
as well as analytical linearized orbit theory, in- B8cluding the beam self-fields.

We may study the behavior of an intense elec-
tron beam in the stellatron quantitatively by con- Betatronsidering small departures from a "reference

orbit," a circle located at the null point in the
quadrupole field, at r=r,, z =0. Here and below Stellorator
we use a cylindrical (r,O,z) coordinate system Field
with origin at the center of the torus's major
cross section. Quantities evaluated at the ref-
erence orbit will carry a subscript 0 below; de- R

partures from this orbit will carry a subscript 1. FIG. 1. Stellatron configuration.
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find

i+on-AMcosm)z 1  y - ~~(8z +r~A) (~ sner 1 6 j,(b

01= (r(/r np nm,(3)

where ,=eB,/mvoc, yo is the relativistic factor
for the reference orbit, W. 2 = 47moe2 /Myo, no is 1pointing out. First, stable motion is possible
the beam number density, r., is the minor radius throughout an injection- acceleration cycle. This
of the beam, a is the minor radius of the (perfect- has been checked for many possible time histo-
ly conducting) chamber, and A= =krB. /Bo. ries. A typical trajectory in the stability plane is

By performing a formal ensemble average of shown in Fig. 2. The unstable region on the left
(3a)-(3c) one may find equations governing single- of the diagram would not be entered in this case
particle motion and that of the beami centroid. even if the acceleration were continued; "u"
Details will be published elsewhere. By changing never changes sign in this case.
the independent variable from t to 0, and making The second important feature of the solution
the transformation t (rl+ iZ1 )/r0 =o exp(imO/2), pertalns to the energy bandwidth of this machine.
one obtalns an equation for it which may be solved We note that the radial shift (7) of the orbit of a
in the special case, n =1,2 with the following re- mismatched beam is, as expected, much smaller
suits, than that in a weak focusing (pi = 0) device. (A

Particle motion is oscillatory (under certain can easily exceed 100-200 in designs we have
conditions; see below) about a center located at considered.) The stellatron's large energy band-

Or(~ width has very helpful consequences for injector
s f, +±2 (~mbft,' ,(4) and magnetic fielddesign tolerances.

."~ ~ ~ ~~ r + _Sz2 +'- mz - -l): (Iao im~ ,(b

whereThe introduction of fixed toroidal and helical
w nher , n. =W nu/2y 0er sosi, b=B e Bo fields to the betatron causes the betatron wave-
.o the/b0

2 a, and angular brackets denote an en- lengths to depend on energy, resulting in reso-
semble average. There are five characterFsitc nant instabilities driven by field errors during
oscillation frequencies, mt and (m/2 acceleration. If the toroidal field is sufficiently
where large, the betatron wavelengths will be insensitive

etai w bpuj2 2e)1/2 (5)ato beam current. Such instabilities may be avoid-
e i e t i red by holding all the fields in constant ratio dur-

with A Rf,, +-1b 2t A = m + b. These frequencies ing acceleration. Alternatively, the effect of the
are real when the system is located within the
regions of the plane of Fig. 2 marked "stable."

0.5We remark that for low-current beams (n v- 0)cneuensforijco
the stability condition reduces to a 0.4helica

I -M 2 + m b 1 > 1 2 gI . ( 6 ) 
v = I MIflm + 0

The "most" stable configuration results when the0.
field lines are twisted clockwise (m >0) when
viewed In the direction of Bob, i.e., in the same [UNSTABLE UNSTABLE
sense as electron gyration about Be.

Similarly, the motion of the beam center is it- 0.T e
self oscillatory about a center located at ALE

S) -1.0 0.0 10 2.0

r b+g
2( 2 +m-~' (7) U

where i - ( b 2 a 2 m. , with characteristic fre- FIG. 2. Stellatron stability plane (n =A). ete dotted
2line is the trajectory of an experiment wiwt 1=10 kA,

quencles as in (5), under the replacement n Boo=5 kG, slm2u/m=1, m=20, r0 =I m, while B. 0

te staiyn d n rdis raised from 118 to 1700 G, corresponding to an in-
Two important features of the solution are worth crease in energy from 3.5 to 50 MeV.
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instabilities may be minimized if the energy gain minor axis at s. The toroidal correction, (P S",
per revolution is large enough to pass rapidly is given to first order in the inverse aspect ratio
through each resonance. by Danilkin.9 All calculations have been per-

A single-paticle code, which integrates the formed forI=2. The variables Mi and m, which
relativistic equations of motion for an electron in describe the helical field in the previous analyti-
an applied magnetic field, has been utilized to cal analysis, are given by g =Emb/2 and m
study certain nonlinear aspects of the stellatron = 2aR, for I = 2.
configuration. Unlike the analytical analysis of This model has been utilized to investigate the
the preceding paragraphs, this analysis does not single-particle bandwidth of the stellatron. As
employ a paraxial approximation for the electron e, increases, the allowed mismatch in the stel-
motion and does not use an expansion in the parti- latron becomes too large to be correctly modeled
cle displacement from a reference orbit. Also, by the linearized theory. Figure 3 shows the re-
the applied field in this analysis includes toroidal suits from both models for bandwidth versus e,.

* corrections to first order in the inverse aspect These calculations assume a torus having a 1-m
ratio.

The total magnetic field utilized by the code
may be expressed as B= Bb + B , where Bb is
the conventional betatron field, given by Eq. (2), a) -0.1
and B, is the stellarator field, given by 1=,
in terms of the magnetic scalar potential, 4,,
which may be expressed as 4b,(O) + 4, "), where

4(,o)(p,( ,s)=Boo{s .- (E,/a)I,(%)sinjtl( - cs))}.

Here, x = lap, a = 2ir/L, L is the helix pitch -3%

length, and I, represents the modified Bessel D
* function. The coordinates (p,p ,s) form a local Z

cylindrical system centered on the minor axis, +3%

where s =R.6 is distance measured along the

minor axis for toroidal angle 0, and (p, o) are

polar coordinates in the plane transverse to the

0.1
200% -0.1 01

DR
Au.

-U LINEARIZED ANALYTICAL THEORYhI 0

0.b) 0.

u0 D'NUMERICAL

S CONTAINED

J ORBITS D

-100% I I

1.0 2.0 3.0 -0 . _

-01 0.1

FIG. 3. Stellatron single-particle bandwidth. The DR

bandwidth Au/u 0, where u =fi, is plotted against c FIG. 4. Single-particle orbits. (a) Without the
a 2/mb. The accelerator is matched at -y7 with B, 0  helical field components (c = 0), A u/u 0 3%. (b) stel-
=118 G, and Be 0 =l kG. latron orbit with E I , Au/uo= + 50.
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major radius and a 10-cm minor radius. A test from injection up to the highest energies achiev-
electron is launched tangent to the minor axis able by conventional inductive acceleration.
with relativistic momentum u =yO, which differs It is a pleasure to acknowledge numerous dis-
from the matched momentum, u,, by varying cussions with members of the Naval Research
amounts, Au. The figure shows Au/u o against E 1 , Laboratory Special Focus Program "Advanced
and represents the maximum IAu/uol for which Accelerators." This work was supported by the
the test orbit remained confined in the device. Naval Research Laboratory.
Mismatch in excess of 50% can be tolerated for
these parameters.

Figure 4(b) shows typical stellatron orbits, pro-
jected on the minor cross section, for Be,= 5
kG, E1 = for ± 50% mismatch. The betatron field
is again 118 G with n =-. Without the helical field D W. Kerst, Phys. Rev. 58, 841 (1940).

shows that as little a 2D. W. Kerst, G. D. Adams, H. W. Koch, and C. S.
contribution, Fig. 4(a) Robinson, Phys. Rev. 78, 297 (1950).
± 3% mismatch is not tolerable. 3 L. A. Ferrari and K. C. Rogers, Phys. Fluids 10,

The superposition of twisted quadrupole, toroi- 1319 (1967).
dal, and conventional betatron magnetic fields ap- 4P. Sprangle and C. A. Kapetanakos, J. Appl. Phys.
peard to offer significant practical advantages 49, 1 (1978).
for the confinement and acceleration of large 5N. Rostoker, Comments Plasma Phys. Controlled
electron currents (tens of kiloamperes) to moder- Fusion 6, 91 (1980).

6P. Sprangle, C. A. Kapetanakos, and S. J. Marsh,ate energies (hundreds of megaelectronvolts), in Proceedings of the International Topical Conference
Foremost among these advantages is the greatly on High-Power Electron and Ion Beam Research and
improved energy bandwidth over that of a weak- Technology, Palaiseau, France, 1981 (unpublished),
focusing device. The large bandwidth of the stel- p. 803.
latron relaxes the requirements for monoener- 7A. A. Mondelli and C. W. Roberson, NRL Memoran-

getic injection, for a uniform (within a few per- dum Report No. 5008, 1982 (unpublished).
cent) magnetic field configuration, and for a rigid 8K. R. Symon, D. W. Kerst, L. W. Jones, L. J. Las-

mechanical design. Injection should not be any lett, and K_ M. Terwilliger, Phys. Rev. 103, 1837
(1956).

more difficult than for other high-current ac- 9I. S. Danilkin, in Stellarators. Proceedings of the
ceLerator concepts, and is facilitated by the ex- P. N. Lebedev Physics Institute, edited by D. V.
ternally applied rotational transform of the stel- Skobel'tsyn (Consultants Bureau, New York, 1974),

lerator field. The orbits should remain stable Vol. 65, p. 61ff.
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A bumpy-torus betatron
D. Chernina)
Berkeley Research Associates; Springfield. Virginia 22150

A. Mondelli
0 Science Application& Inc., McLean, Virginia 22102

C. Roberson
Office of Naval Research. Arlington, Virginia 22217

(Received 30 August 1983; accepted 11 June 1984)

The combination of a bumpy-torus field and a conventional betatron field leads to an interesting
* strongly focused, high-current accelerator configuration. The question of orbital stability of a test

particle in such a device is discussed and it is shown that the alternating gradient focusing in this
accelerator can easily lead to greater than 20% bandwidth in allowed mismatch between the
vertical magnetic field and the average beam particle energy.

*Q Conventional betatrons' are current-limited due to the defo- within the beam is, in the paraxial approximation, for n =

cusing effects of space charge at injection. In recent years d 2P 1
there have been several renewed attempts at overcoming this -O + 2 - 4n, + b '(1 + e cos 20,)'] 0
(rather severe) space-charge limit. Specifically, there have

been high-current conventional betatrons proposed2 which = - exp[(ib /2m)(20. + e sin 20)], (2)
employ high-energy injectors as well as so-called modified m2 PO
betatrons3"4 which employ a toroidal magnetic field to pre- where
vent space charge blowup of the beam. In both of these eO, smO /2,
cases, however, a mismatch between the injection energy 0--(x + iy) exp [(ib /2m)(20, + e sin 20,)],
and vertical field of a few percent or so will cause the beam to
hit the wall, a matter of some concern in a high-current de- b B90/B.0 , es6Be/BOo.
vice. The maximum allowed error in the vertical field is typi- Here Po is the momentum of a particle which would circulate

* cally on the order ofa few gauss in designs which have been on the minor axis, 6P is the "momentum error,"
considered. Recently, it was shown' that the combination of ns av/(2 ? 0 ,o) where iob, 2Io are the beam plasma fre-
an i = 2 stellarator field and ordinary weak focusing beta- quency and the vertical field cyclotron frequency, respec-

tron field results in a strong focusing high-current betatron tively, and row( I + (Po/mc)2]i/ 2. We are interested both in
or, "steilatron," with a large energy bandwidth. Such a con- the solution to the homogeneous part of (2), which will give
figuration has the advantages of relaxing the vertical field orbital stability criteria, as well as in the solution to the inho-
and injector tolerances. In addition, the strong focusing in- mogeneous problem which will give the momentum com-

0 troduces a threshold for the negative mass instability, so that paction of the machine.
this instability does not operate at injection (though other The quantity n, appearing in Eq. (2) describes the (net
fast growing resistive or kink modes may occur below the defocusing) effect of the self-electric and magnetic forces of
negative mass threshold). In this brief communication we the beam. Since it depends on beam density and therefore on
report analytical and numerical results on the bandwidth the beam minor radius, n, will in general vary with azi-
and stability of an alternative strong focusing scheme, name- muthal angle 0 around the device in a manner governed by
ly, a combination "bumpy torus" and betatron field, corre- the standard beam envelope equation. Consequently, when
sponding to the I=0 stellatron. the beam envelope is stable, we expect n, to behave as

The bumpy-torus betatron field consists of a superposi- n,(0)= no + n,, cos mO + ... but we shall assume here,
tion of an = 0 stellarator field and the field of a convention- for simplicity, that eb)n,a so that, in (2), n, may be ade-
al betatron. Near the minor axis at r = ro, z = 0, this field has quately approximated by its average value.
the form Equation (2) is a Hill equation, which has characteristic

B, = - nyB,0 + 16Bomx sin mO, bands of stability, as shown in Fig. 1. The boundaries of the
stable regions have been obtained numerically, using stan-

Be = Bso [ I + (6BO/Bo) cos mO J. (1) dard methods.' The shaded regions in the figure are unstable

B, = Bo(l - nx) + J 6Bmy sin mO, portions of the plane, e vs b/m, for the case n, = 30 and
m = 30. The intersections of the unstable regions with the* where xm(r - ro)/r 0.m/r o,, 9 is the azimuthal angle, n is abscissa are given by

the vertical field index, and m is the number of bumpy-torus

field periods around the torus. Bo, Be,, and &Be are con- (b 2 + 2 - 4n, )/m 2 = q2, where q = 0,1,2....

stants. which is the condition that the transverse rotation frequency
Treating the self-fields of the beam by a simple cylindri- of a particle within the beam is an integer multiple of the

cal model, we find the equation of motion for a test particle "focusing frequency," m' 0o -a condition which allows res-
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FIG. 1. Stability plane for the bumpy-torus betatron, for the case resonance lines k = 0, 5, 10, 15, 20, 25. indicated for the case n, =0,

n, - m m, 30. The shaded regons are unstable for particle motion. m =30.

onant transfer of energy from the longitudinal to transverse to the vertical betatron field, i.e., the question of the momen-

degrees of freedom and, consequently, exponential growth turn compaction of this configuration. In order to address

of the betatron oscillation amplitude. this question we have examined numerically the behavior of C
As B, is increased during acceleration, one typically single particle orbits, neglecting beam self-fields but employ-

would not wish to increase B, simultaneously since this ing the full Bessel function representation of the I = 0 focus-

would require significant additional energy storage. The re- ing field. Figure 2 shows the allowed mismatch, 6P IPo, plot-

sut is that the operating point of the accelerator will move ted against e.BolB, for Bo =2 kG, B,o = 118 G,

-right to left in Fig. 1. Consequently, the accelerator should n = J, r0 = 100 cm, and m = 30. This plot is generated nu-

be run in the left-moat stable band to avoid crossing unstable merically b.y launching particles on the minor axis in the

bands. These considerations require m > b at injection and toroidal direction with various amounts of mismatch. The

force the use of a large number of field periods in the design figure shows the largest mismatch for which the calculated

' of the focusing system. The left-most unstable band, corre- orbits are contained in a 10 cm minor radius chamber. Con-

sponding to q = 0, is due to beam space-charge and rapidly tainment of particles with a mismatch of ± 20% is obtained

disappears during acceleration since the self-field index n, is for em 0.2. We stress that the momentum compaction of this

proportional to yo- 5, where Yo is the relativistic factor. The configuration is due to the alternating gradient field of the

left-moat stable band, therefore, becomes broader during ac- "bumps," though the phase shift per period is dominated by

celeration; the first stable band is at its most narrow at injec- the average value of the toroidal field. Using Eq. (2), with

tion, when yo is smallest. n, = 0, a perturbative calculation valid for small values of e,

We next consider the important question of contain- of the momentum compaction factor, gives

ment of prticles whose average momentum is not matched r/ro (.- 22_b)2] (3)
6" o m 1- - (3)

40 which holds only for m > b. One sees in (3) the helpful effect
.1 -of abumpy torus field.

20 In conventional betatrons, resonances are automatical-
ly avoided by increasing the particle momentum and the ver-

- tical magnetic field in synchronism. The introduction of
Q.o o nonsynchronous fields (a fixed toroidal field, for example)

makes the betatron wavelengths energy dependent, which
'-----can lead to the crossing of resonances driven by field errors

-2- during acceleration. As in all strong focusing devices, the
occurrence of orbital resonances plays an important role in

-40' the operation of the bumpy-torus betatron. Using the Flo-
0 0.1 0.2 0.3 0.4 0.5 quet solutions to (2) (for n, = 0) it is possible to obtain a

--C condition for the integer resonances, when space-charge ef-

FIG. 2. Single particle bandwidth. Data points indicate the maximum value fects may be neglected:
o(momentum mismatch tolerated by the device versus the bump size e for blpi') = cos {ir[(b + 2k)m]}, (4)
particles ini zeiald on the minor axis, for the specific case, = 18 G,
0, - 2 kG, ro = 100 cm, m - 30. where 01(6,.) is the solution to (2) with 6P m0 satisfying
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Design and Operation of a Collective
Millimeter-Wave Free-Electron Laser

ROBERT H. JACKSON. STEVEN H. GOLD, ROBERT K. PARKER, HENRY P. FREUND. PHILIP C. EFTHIMION,
VICTOR L. GRANATSTEIN, MELVIN HERNDON, A. K. KINKEAD, JOHN E. KOSAKOWSKI. AND THOMAS J. T. KWAN

Abarmet-A new Iree-electron laser experiment has been designed at beam dynamics and the beam-wave interaction have been studied.
NRL to operate at milinmeter wavelengths using a collective beasn-wave Measurements indicatesa peak power production o( 35 MW at 4 mm with
intea0 in Critical features of the experiment include an apertured an electronic efficiency of 24 percent. Aspects of thme experimental design
diode which provide a low-esnittance electron beu, a wiggler magnet are discussed, and the results of a parametric study of the power depew-
with adiabatic entance and exit, and an operational domain centered doece on the fields ane presented. Detaled calculations (both analytic
around the wigger-guide fuld! groesonnce. With the experiment con- and computational) have been performed to analyze the linear and non-
figured as a superradiant amplifier, the effects of the gyroruonance on linear effects in the experiment The results of these calculations ame-

shown to be in good agreement with laboratory measurements.
Manuscript received July 7, 1982; revised October 1. 1982. This work

was supported by the U.S. Naval Air Systems Command Under Contract
WF32-389-592, and by the U.S. Air Force Office of Scientific Research 1. INTRODUCTION
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under contract to North Carolina State University.
R. H. Jackson was with North Carolina State University. Raleigh, NC HE free-electron laser has become the subject of intensive

27650. He is now with the Mission Research Corporation. Alexandria. T research because of its potential as an efficient. high-power
VA 22312.soreocotnosytnbechrnraito.Estal,

S. H. Gold, R. K. Parker. H. P. Freund, P. C. Eftiimion, V. L. Granat- oreo otnosytnbechrn aito.Esnily
stein, A. K. Kinkead, and J1. E. Kosakowski are with the Naval Research the free-electron laser is a linear fast-wave device in which a
Laboratory, Washington. DC 20375. signal wave is amplified at the expense of the axialkinetic energy

Mv. Herndon was with the Naval Research Laboratory, Washington, of a codirectional relativistic electron beam through interaction
DC 20375. He is now deceased.

T.J.T. Kwan is with Los Alamos National Laboratory. Los Alamios, with the periodic transverse field of a "wiggler" or pump
NM 87545. magnet. The output wavelength is related to the wiggler period
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by the approximate relationship X, - Xw/2t 2. where X. and time through a wiggler period corresponds to one cyclotron
Xw are. respectively, the output wavelength and wiggler period period.
and -y is the relativistic mass factor. This frequency upshift
provides an obvious advantage for high-frequency power pro- II. EXPERIMENTAL APPARATUS

duction.
Within the range of available electron beam and wiggler tech- A. Experimental Configuration

nologies. free-electron lasers can be designed such that the For these studies, the VEBA pulse-line accelerator was modi-
beam-wave interaction can be dominated by either single par- fled [8] and interaction parameters were selected to ensure a

- ticle or collective effects. If the Debye length of the electron collective interaction. Computational analysis produced an
beam is less than the wavelength, collective effects dominate injectiondiode design [91 which provided significantly improved
and the resultant three-wave parametric interaction is described beam quality. As shown in Fig. 1, the diode was formed by
as stimulated Raman scattering. This relationship leads to a locating a cylindrical graphite cathode with hemispherical tip

-: requirement for a high electron density and a small spread in at a distancc of 1 cm from a shaped graphite anode. A 6 mm
the axial velocity distribution of the electron beam. More diameter aperture in the anode plate was used to collimate the
specifically, the axial velocity spread must be much less than injected beam. Electrode contourswerederived computationally
X ,Wp (y - l)/4v'7./3, where wp is the invariant plasma fre- to provide radial force balance for near-axis electron trajec-
quency, _' = (1 - 02)-t/2. 0 = v/c fz M (I - -2 = 1/uc, tories. With this design. the axial velocity spread of the beam
c is the speed of light. In practical terms, this constraint means injected through the aperture was reduced to less than 0.1
that considerable care must be taken to control the beam emit- percent. which corresponds to a normalized beam emittance of
tance if intense beam experiments conducted at millimeter and 30w mrad • cm.
submillimeter wavelengths are to exhibit wave-wave scattering. The pump wave was a right-hand circularly polarized magne-

When collective effects are dominant, positive gain is achieved tostatic field produced by a 63 cm long bifilar helix of 3 cm
when the pump-shifted. negative-energy, space-charge wave is periodicity. The bifilar helix consisted of two coils of copper
synchronous with an appropriate waveguide mode. The primary magnet wire with four layers per coil wound on a grooved

- advantage of wave-wave scattering is that it offers significantly nylon form. To prevent perturbation of the beam. a gradual
higher gain and intrinsic electronic efficiency than can be ob- transition into the wiggler field was necessary. A 21 cm tran-
tained with- wave-particle (Compton) scattering. The higher sition region was provided by flaring the radius of the helical
gain of the collective interaction is sufficient to make amplifier windings along a circular arc while keeping the period of the

.. operation practical. Calculations based on an idealized model windings constant. The windings were joined at the end of the
[ I I indicate that electronic efficiencies in excess of 10 percent flare by wrapping alternate layers in opposite directions around
and power exponentiation lengths of several centimeters are the nylon form. This counter-winding reduced the magnetic

£ achievable at millimeter wavelengths, field perturbation" caused by the termination of the windings.
Critical performance features predicted for the collective The measured and calculated [ 10] fields in the taper are shown

interaction have not been demonstrated in previous experi- in Fig. 2. With the exception of field values near gyroresonance.
ments. Although exceptionally high peak powers have been the adiabaticity condition was well satisfied by the transition
reported, the corresponding gains and efficiencies have been field as discussed in the section on theory. In addition, a 15 cm

. comparatively low. In an early stimulated scattering experiment adiabatic exit from the wiggler was provided to reduce possible
conducted at NRL [21, a superradiant output of I MW at 0.4 RF noise production resulting from unnecessary perturbation
mm was generated with an approximate efficiency of 10-1 of the beam.
percent using an electromagnetic pump wave. A subsequent The initial experiments were conducted with the device con-
oscillator experiment [3] with a magnetostatic pump produced figured as a superradiant, or noise, amplifier. With 1.35 MV

. - a comparable peak power at the same frequency with an effi- applied to the diode, a 1.5 kA electron beam of 60 ns dura-
ciency of 3 X 10-3 percent. In other experiments, peak powers tion was extracted through the anode aperture and propagated
of 8 MW at 1.5 mm and 20 MW at 11 mm with corresponding through a tapered-wall transition into a cylindrical stain-
efficiencies of 0.2 percent and 0.3 percent have been reported less steel waveguide of 1.1 cm inner diameter. The axial mag-
[41, [5]. netic field was held constant from behind the cathode to

Recent computational analysis of the electron flow in the beyond the interaction space and was variable up to 20 kG.
cold-cathode diodes typically used in these experiments has The wiggler field was variable from 0.1 to 4 kG. With this

- ' indicated that poor beam quality likely had a strong influence selection of parameters, the beam axial velocity spread had to
on observed performance [6]. Recognition of the constraints be much less than 0.5 percent for collective effects to dominate
on beam quality led to the assembly of a new experimental the interaction.
configuration designed to study the Raman interaction at To provide temporal isolation from reflected signals. the
millimeter wavelengths [7]. With this apparatus, the combined radiation diagnostics were separated from the interaction space
effects of the axial guide and helical wiggler magnetic fields on by a 5 m length of waveguide. The principal radiation diagnostic
the electron dynamics and the beam-wave interaction have been was a Laser Precision KT 1540S pyroelectric detector which

.e. studied in initial experiments. These effects are of interest provided a time dependent measure of radiated power. Absolute
because a significant gain enhancement can be obtained near integrated power measurements were made using a pyramidal
the gyroresonance which occurs when the electron transit millimeter-wave calorimeter [1l constructed at the labora-
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TRANSITION PYROELECTRIC

DETECTOR B. Diode Design
CATHOE

0oOE WIGGLER COIL Theory places severe constraints on the quality of an electron
- E ROTATED beam for collective processes to dominate the beam-wave

P FILTER interaction. Computational analysis of the foil-less diodes used
in previous experiments has shown that the beams taken as a
whole did not satisfy the theoretical quality requirement,

D..IF.T. r U although in some cases layers within a beam were cold enough
VAC - to permit marginal collective interaction [6]. Furthermore.

the analysis indicated that there are inherent problems in
-- .-' _.= . obtaining high-qualtiy beams in foil-less diode geometries.

Two alternative designs were considered: injection through an
MAG ET COIL anode foil and a collector anode with a beam extraction aper-

ANODE GDrRON ture. The use ofan anode foil was considered to be unattractive
Fig. 1. Experimental setup for uperradiant millimeter-wave Raman because of consequent beam scattering in the foil, the necessityfree~lectron lawe.

for replacement of foils after every shot, and resultant beam
pinching in the diode. Analytic and computational analysis

0- of the apertured diode indicated that this approach could pro-

vide the required beam quality.
2 The apertured diode was designed using a modified version

S[II ] of the SLAC Electron Optics Code [12]. The objective
ql was to produce paraxial electron flow in the diode near the

axis by shaping the electrode surfaces to provide a radial electric
field to balance the pinching effects of the beam self Be field.
Since the cathodic electric fields were too high to control the
emitting surface, it was necessary to collect the excess current

• (-90 percent) and allow only the cold, near-axis portion of
(430 the beam to propagate into the interaction region. The final

*diode design, along with the computed electron trajectories, is
* shown in Fig. 3. In this design the cathode was a graphite

, •cylinder with a hemispherical tip. To keep the emitting surface
0 5 0 I 20 small and the diode impedance high, the cathode tip had a

AXIAL DISTANCE INTO WIGGLER (C-1 radius of curvature of 2.5 cm on the face and 0.5 cm on the
Fig. 2. The on-axis wiggler field profile in the 21 cm adiabatic entrance

of the bifilar helix. The solid curve is based on the equations in [ 101, edge. The anode was a graphite disk with a 100 conical depres-
and the squares ue the normalized measurements. sion and a 6 mm diameter aperture on axis. The aperture was ex-

tended 15 cm into the interaction region with a gradual taper
tory. Spectral information was obtained by sequentially placing to the 1 I mm diameter of the cylindrical waveguide. Because
a series of high-pass filters in front of the detector. The high- the 1 cm diode gap was sensitive to voltage prepulse [131. a
pass filters were cutoff waveguides of two mechanical designs, dielectric surface-flashover switch [I I] was installed in the
both fabricated from aluminum cylinders. The filter designs cathode shank. The switch eliminated prepulse problems and.
used either a single axially located hole with tapered entrance in addition, sharpened the voltage rise time. The reduced rise
and exit or symmetrical arrays of constant diameter holes. time enhanced the formation of a homogeneous, uniformly

For these experiments, the beam-wave interaction parameters expanding cathode plasma, and thereby acted to preserve the
were chosen such that the pump-shifted negative-energy space- basic diode geometry. The importance of eliminating prepulse
charge wave would couple with the fundamental TE11 mode problems was illustrated by two experimental observations.
of the cylindrical waveguide. An overlay of the uncoupled beam First, when a prepulse current occurred, the beam noise (no
and waveguide dispersion curves shows that two intersections wiggler) in W-bandjumped by more than an order of magnitude.
with the forward wave are possible. Primary interest is centered Secondly, with the wiggler field, power output was greatly
on the upper intersection, which produces a large relativist: reduced when even small prepulse currents occurred. These
upshift. In the limit 01 = 0 (1 = UjC), this intersection occurs observations indicate a reduced beam quality when the cathode
at about 180 GHz, while the lower intersection is about 20 plasma formation is not rapid and uniform.
GHz. The effect of increasing the wiggler field is to increase The calculated trajectories shown in Fig. 3 represent the
01 while simultaneously decreasing the axial velocity 0... This electron flow expected for a guide field of 10 kC and an applied
shifts the upper intersection to lower frequencies (and the voltage of 1.5 MV. The "grid" in the figure is a computational
lower intersection upwards), until coupling is lost at %60 device used to give a physically meaningful boundary condition
GHz for Pi o 0.34. To block the transmission of any low. to the electron emission from the cathode shank while avoiding
frequency power not associated with the upper intersection, the problems of resolving the crossed-field flow. The net effect
a 5 mm (60 GHz) high-pass filter was inserted near the detector. of the applied and self-generated fields is to produce an elec-
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ANODE

5.2cm 9 = 10.0kG
GRAPHITE

EOUIPOTENTIALS - 'COLLECTOR Iz

~: ' ~ .9
z&

0.3cm A ..
85c. B*- * EAMCAT E...... APERTURE e EXPERIMENTAL VALUES

CATOD-T1.5MV a CODE CALCULATIONS

- 1.0cm u 1'2kA 0.3

Fig. 3. The VEBA apertured diode with the calculated electron tra-
jectories (only half of the trajectories are shown). Note the paraxiai
flow close to the axis between the cathode and anode, and the 0 2 4 6 a io '2 '4 16 !a 20

defocusing effect of the aperture. AXIAL MAGNETIC FIELD (kGI

Fig. 5. The current transmitted through the diode aperture as a function

,4- of axial guide field.

As the magnetic field is increased, the cathode plasma does
21 EXERIETAL VALUES not continue to expand at the same rate in all directions. How-

• CODE CALCULATIONS ever. the field strength should have no effect on the axial ex-
N IS pansion at the cathode face. The effect of cathode expansion

on extracted current is apparent in Fig. 5. At the higher mag-

> ,netic fields, the plasma expansion velocity derived from these
- values is also consistent with a 2-3 cm/Ms expansion velocity.

Plasma expansion at the lower field levels (< 8 kG) does not
2 £ show as large an effect because the current is limited by aper-

ture defocusing and not by the available current.
0 2 4 6 6 10 12 1 1 IS . o C Ream "Quaityifeasuremenrs

AXIAL MAGNETIC IELo (C

Fig. 4. Perveanceoftheapertureddiodeasa function of axial guide field. When corrected for plasma expansion, the predicted values
of diode perveance and transmitted current are in excellent

tron flow near the axis whichexhibits little radial motion until agreement with experimental measurements. Although the
the aperture is reached. The radial electrostatic fields created comparison of macroscopic features provides a tentative ver-
by the aperture then act t6 defocus the beam and produce a ification of the computed results, the more critical issue is
small, coherent radial oscillation in the extracted beam. Results the velocity distribution within the transmitted beam. In
from these calculations indicated that beams with less than 0.1 general, experimental measurement of the velocity distribution
percent axial velocity spread could be produced with the aper- within an intense, relativistic electron beam is extremely
tured diode configuration. difficult. However, using the special properties of the apertured

Where possible, code results were compared with laboratory diode, a simple method was devised to experimentally verify
measurements to validate the calculations. In comparing the the code results. For these measurements, the 6 mm diameter
calculated and experimental values, it should be noted that the anode aperture was extended by 15 cm with a uniform dia-
code dealt with the "cold" geometry, whereas the effective meter drift tube which terminated in a Faraday cup. The
cathode in the experiment was an expanding plasma. The initial perpendicular velocity of electrons at the beam edge was then
comparisons were made with respect to two parameters which calculated by comparing the transmitted current at a given
describe the macroscopic properties of the electron flow in the value of axial magnetic field (Fig. 5) with that estimated for
diode. These parameters are the diode perveance [141 and the an infinite field. The axial velocity spread was then derived
current transmitted through the aperture. The perveance is from the beam-edge transverse velocity. This analysis requires
calculated from the total diode current and voltage and is that the cathode tip emission density and the electron guiding
shown in F:g. 4 as a function of the axial guide field. The center radius be independent of the axial field, and that the
decrease in perveance with increased guide field indicates a beam be monoenergetic. Analysis of results computed at
change in the effective diode geometry. The observed reduction several values of the guide field indicates that these conditions
results from the restricted radial expansion of the electron were well satisfied. In addition, a uniform beam density is
trajectories and the cathode plasma at the higher fields. At assumed, although this method could still be used if the
low guide fields where the entire diode gap decreases, the density profile were known. Code results and experimental
difference between the computed and observed perveance can damage patterns have shown that the assumption of a uniform
be used to estimate the plasma expansion velocity. For the beam was a good approximation.
values at 2 kG, this gives an expansion velocity of 2-3 cm/lis The relationship between transmitted current and axial
which is in good agreement with previous measurements [15]. velocity spread was derived as follows. In the limit of an in-
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finite field, the electron Larmor radius is zero. As the field is 1

reduced, the electron guiding center remains unchanged, but STABLE-I STABLE-Ii

* the Larmor radius becomes finite. Only those electrons for
which the sum of the Larmor and guiding center radii is less
than the aperture radius can be propagated. The current ratio
is therefore given by

where r,, and PL. are, respectively, the drift tube wall and kLS
Larmor radii, B, is the axial guide field, and f(ae) is the trans-
mitted current in the limit of infinite magnetic field. When /
solved for the perpendicular velocity, this expression becomes I

± = {l - [f(Bo)1I(-)] 2}eBorwlmc2-. (2)
12

Numerical analysis of electron trajectories in the diode and 2oI,€

* drift tube verifies this prediction of the electron perpendicular Fig. 6 The two types of stable orbits possible in an ideal wiggler field.
velocity at the beam periphery. The axial and transverse veloc- The axial velocities are shown as a function of normalized guide
ity spreads are related as follows: field. Note that the Type I orbits become unstable at lo/ck w = 0.765.

A P ./O = = .) = 2 2 ( w p 4 =  ( 3 ) the linear and nonlinear analysis, the effects of the realistic

With this relationship, the transverse velocity at the beam wiggler fields were investigated with a multiparticle trajectory
* periphery can be used to estimate the axial velocity spread. code. Using this code, the impact of the wiggler field gradients

As seen in (2), a measure of I(-) is required to complete the on the velocity spreads of an initially cold beam were studied
estimate. As a lower bound, the transmitted current at 20 kG as a function of the pump strength and the proximity of the
was measured to be 1.5 kA. The Child-Langmuir current, guide field to gyroresonance.
when corrected for cathode plasma expansion, serves as a
reasonable upper bound and is 1.8kA for this diode geometry. A. LinearAnalysd

• When the applied axial field was set at 10 kG, the transmitted Recent theoretical work [161, [171, [181 has shed light on
current was 1.3 kA. The resultant beam onditions are esti. the collective interaction in the presence of an axial guide
mated, therefore, to be within the followin. -ange: field by perturbation methods about equilibrium orbits. For

0.033 4 0(r,,) 40.072 combined axial guide and helical wiggler magnetic fields, two
classes of stable helical equilibrium orbits exist [19], [201

and (4) with constant velocity u, and transverse velocity

S3 X 10 4 < A i /13 .< 1.4 X 1 0- . uL = 1 w u2 ( f o - -fk wv ) l (5)

For comparison, the computed value for 10,/0, was 9.5 X
l' at 10 kG. Even at the upper limit, the beam axial velocity where a., =_ eB.,,/mc, k, = 21r/X, and B, and B, are the

spread is well below that required for collective effects to axial and transverse magnetic fields (see Fig. 6). Group I orbits

dominate the interaction. To place this achievement in proper occur at low values of the guide field (f2, < ykwy') and exhibit

perspective, it should be noted that these velocity spreads are high u, which decreases monotonically with increasing B,.
more than an order of magnitude less than those typically Such orbits become unstable at a critical value of axial field
associated with electron beams of this intensityh given by 12 = 7(l + (vL/U))-kwvo. Group II trajectoriesaetexist for all B, but exhibit high axial velocities only when

Ill. THEORY 1o > -1k..,,c. The prowth rate in the limit of stimulated Raman

, The analysis of the beam-wave interaction in a millimeter- scattering is given by

wave free-electron laser is a complex endeavor requiring not (hn k)max = 1/2 10.L I (w°pkw-tzy2 $"/v) 12  (6)
only a linear theory to illuminate the interaction physics and
to predict gain but also a nonlinear analysis to examine satura- where wp is the invariant plasma frequency, and
tion effects and efficiency. To make the linear analysis more
tractable, several simplifying assumptions are usually imposed Q--- Z o7v [ + vb),o TkwI I.
on the model. In the linear theory which follows, a cold elec- Note that the presence of the axial guide field leads to gain
tron beam and an ideal helical wiggler field are assumed. enhancement both by increasing the transverse velocity and
Because of the complexity of the saturation phenomena, the through 0, which comes from the ponderomotive potential.
nonlinear analysis was performed using a fully electromagnetic In the limit of zero beam temperature, the Raman regime is
numerical simulation of the interaction. Although the code did valid as long as
provide the desired nonlinear capability, the provision for only
one spatial dimension limited the analysis to the idealized 1/2 s
wiggler fields. To assess the consequences of this limitation in WP >>8 02, uL kw. (8)
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dicular momentum distribution. For this distribution the
.80 spread in axial velocity is given by

36' 5\ U a ~u ools,

- l/Ap-- for -pc << 1. (11)
, 2 po

2 -100

-I The velocity spread produced by (10) represents a true. random--- -temperature, unlike the experimental value which represents
_of the radial dependence of the velocity distribution. The exact

4 6 a- ,0 12 ,4 correspondence between these types of velocity spread is un-
Bo0 kG) clear; however, they are expected to have similar effects on the

Fig. 7. Calculation of gain (solid lines) and emission frequency (dashed beam-wave interaction.
lines) as a function of axial magnetic field for B r = 0.63 kG. The Electron beams with a momentum distribution given by (I 0
experimental 5 mm cutoff is shown as a horizontal dashed line. Note
that below gyroresonance the pin curve is much flatter than above were initialized self-consistently in the simulations. The simu-
the resonance. lations had an immobile ion background to provide the neces-

sary electrostatic neutralization and periodic boundary con-
TIerefore. the Raman regime, in this limit, is accessible even ditions for the electromagnetic fields and the beam particles.
for lower beam densities when an axial field is present and 4) The simulation parameters were chosen to match experimental
is large. The strong pump regime occurs in the opposite limit values to the degree possible.
and is characterized by a maximum growth rate of the form The dependence of the efficiency of energy transfer from

/ the electron beam to the RF wave is illustrated in Fig. 8.
(Iam x  3' 2  z- c ) k (9) The striking result is that the efficiency drops dramatically

2  u, / when the momentum spread increases slightly from 0 to

0.65 percent. However, after the initial sharp drop. it becomes
where -- p/ckw is the beam strength parameter. rather insensitive to the spread. It should be noted that the

A calculation of the maximum gain as a function of B, for efficiency, as shown in Fig. 8, takes into account the energy of
parameters corresponding to the experiment(,y 3.5, B, 0.63 all unstable electromagnetic modes. This rather surprising result
kG), using the results of the complete stability theory, is shown from the simulations shows a completely different nonlinear
in Fig. 7. The dashed line in the figure represents the frequency behavior for the free-electron laser interaction than -might be
corresponding to peak gain. and the calculation has been per- expected from the effects of momentum spread on the satura-
formed only for frequencies greater than the 60 GHz cutoff tion by electron trapping of the relativistic two-stream insta-
imposed experimentally. As anticipated, the growth rate in- bility [221.
creases as the gyroresonance ( 0, - kwu,) is approached The simulations are considered to be accurate representations
from above or below. The apparent discontinuity shown in the of the experiment provided that three-dimensional effects aregrowt rate exprien prooude tha threbitssina effct are9k; orsos
growth rate for Group I orbits at B, 9 kG corresponds to a not dominant, and that the code electron beam adequately
transition from a Raman to a strong pump interaction [i]. models the experimental beam. For a beam with the velocity
For guide fields below this value, as well as for Group It spread observed in the experiment (f 0.1 percent), simulations
trajectories, the gain is given predominantly by the Raman- predict an efficiency of roughly 2 percent. Thisvalue isremark.
scattering result. It is important to recognize, however, that ably close to the 2.5 percent peak efficiency observed in the
nonlinear (saturation), finite geometry, and nonideal effects experiment. Because of the previously mentioned differences
are not included in these calculations. As a result, Fig. 7 cannot between the simulations and the experiment, some caution
be used to predict the detailed variation in the output power should be exercised in applying the code results to interpret
with B,, and can only be used to obtain the parametric limits the experiment. Nonetheless, the good agreement between the
of radiation production and to estimate the small-signal ain, experiment and the simulations is noteworthy, and supports

B. Nonlinear Simulation the beam quality calculations and measurements discussed
earlier.

The effects of beam temperature on the saturated efficiency As shown in the experimental results section, there are definite
- of the experiment were studied with a fully electromagnetic, combinations of the wiggler and guide magnetic fields which

relativistic particle code [21] which included one spatial and determine the onset, maximum, and cutoff of radiation pro-
three velocity components. Although the electron beam was duction. The spatial evolution of the electromagnetic radiation
assumed to be monoenergetic, the electrons were allowed to for three sets of experimental parameters which correspond to
have random velocities in the directions perpendicular to the these conditions is shown in Fig. 9. At radiation onset, the
beam propagation. Such a scattered electron beam can be simulation shows that the linear growth rate of the instability
modeled according to the momentum distribution function was so small that the electromagnetic energy could not achieve

. f(p) = (p - Po) exp (-pi/Ap')I[poAp1F(po/ApL)1 (10) an appreciable amplitude within -the length of the wiggler.
Thus, a change of magnitude of the wiggler field and/or the

whereFTx) = exp(-x 2) fJ exp (P)dt, p is the particle momen- guide field to enhance the transverse velocity of the electron
turn, P0  mc(y 2 - 1)/2, and Ap1 is the FWHM of the perpen- beam would increase the output of radiation. This is illustrated
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Fig. 8. Electron-beam-power to RF-power conversion efficiency as a so(kG)
function of momentum spread. The 0.1 percent velocity spread
observed in the experiment corresponds to a momentum spread of Fig. 10. Transmitted current at the wiggler exit as a function of axial
4.5 percent (see (11)1. guide field.

0. , spatial variation of the actual wiggler field. To evaluate these
.04 - ,.o0.4kG -effects, a multiple-particle trajectory integration code was
9o3L- Oz 8.0 kG
o1- developed and used to study beam propagation in the first-

order wiggler fields and in a finite geometry waveguide [231.00 - A comparison of calculated and measured current transmitted
0 2 4 through the wiggler is shown in Fig. 10 for an effective wiggler

4 field of 0.7 kG. Since the initialcurrent in the code is normalized

B.- 0 ,o to I kA and diode phenomena which affect the injected current3" .s 8Z - 7 , (see Fig. 5) are not included, a superficial disagreement exists

1. for fields less than 6 kG. With that exception, the agreement is
t 0 excellent, and the features predicted by the idealized wiggler

0 7 14 21 orbit theory are clearly present. The rapid decrease in current
*1k at 9.5 kG results from current loss to the waveguide wall as

a. ',. the Group I orbits become unstable at the critical value of
"o/-$.ONG - axial magnetic field. Increased propagation in Group 11 orbits

2 - is seen above 11.5 kG as the wall losses progressively decrease.
The wiggler used in the experiment was designed to provide

7 an adiabatic entrance for the beam (see Fig. 2). Calculations
I&%k incorporating the experimental wiggler profile indicate that

Fig. 9. Spatial growth of electromagnetic energy for field values the transition is adequate, but not perfect. As a result, the
corresponding to the onset, maximum, and cutoff of power in the electrons in the uniform section of the helix oscillate about
experiment. The axial distance is normalized by the wigglet period

(2 w - 3 cm), and the simulations start in the uniform wiggler section. the ideal equilibrium orbits. At modest pump levels and for

fields far from resonance, the oscillations are small. however.
in the second case in Fig. 9. The electromagnetic energy satu- as gyroresonance is approached or as the pump level is increased,

rated at a high level at about two-thirds of the wiggler length. the amplitudes of the oscillations increase dramatically. This
The fact that the electromagnetic energy did not decay away velocity oscillation can act as an effective temperature because
as the electron beam continued to interact with the wiggler of the slippage between the beam and the RF wave as the

• field indicates that the coherence of the electron bunching wiggler is traversed.
was not destroyed. Consequently, the electron beam could still The spatial variation of the first-order wiggler field induces a
deposit energy into other unstable electromagnetic modes. The cross-sectional velocity spread. The magnitude of this spread

" third case shown in Fig. 9 had the highest wiggler field, and depends upon the beam area, wiggler period, pump amplitude,
showed a strong linear growth of the instability. However, the proximity to gyroresonance, and whether the axial field is
instability saturates in a relatively short distance, and the total above or below the "transition" field of the wiggler. The
electromagnetic energy decays due to strong wave-particle transition field is given by
interaction. As a result, the emitted power is significantly imc 2 +)112
reduced. Br=- -fkw (#~I~i (12)

e I

* C. Realistic Wigiler Effects and represents the axial field above which the denominator of

Neither the linear analysis nor the nonlinear simulations took (5) cannot be driven to zero for any value of pump field. The
into account the beam transition into the wiggler and the dependence of the velocity oscillation and the velocity spread

"F
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SAME AVERAGE VELOCITY * 63 kG
SPREAD IN AXIAL VELOCITY 300- 5 mm

--- AXIAL VELOCITY OSCILLATION
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Fig. 11. The two types of velocity spread induced by the actual wiggler
field. The solid curves show the cross-sectional velocity spread due to o a 1 12 4A "
the field gradients and the dashed curves are the velocity oscillations G u Feld (kG I
induced by the adiabatic entrance. The 10 kG curves are below, and
the 15 kG curves are above the 12 kG transition field of the experi- Fig. 13. Measured variation in output power ( < 5 mm) with guide
ment. The cold beam limit is derived from the theoretical expression field for B, = 0.63 kG. The error bars represent the shot-to-shot
(v I)Wp/27'7, kw >> 602. reproducibility of the experimental parameters and are based on five

or more shots.

10 spreads are not random. However, at some level, these macro-
scopic spreads are expected to degrade the interaction in a

I manner similar to a true temperature.

IV. EXPERIMENTAL RESULTS

A plot of radiated power as a function of axial field strength

BEAM LIMIT is shown in Fig. 13 for the interaction parameters used in Fig.
7. This radiated power profile represents a complex overlay of
interactive phenomena of which three are thought to dominate.
The primary issues are the quality of the injected beam (Figs:
5 and 10); the three-dimensional effects of the wiggler fields
on the electron trajectories (this effect is most pronounced

T Mnear gyroresonance, Figs. 10 and 12), and the variation of the
TRANSITION MAGNETIC FIELD gain with the experimental parameters (Fig. 5). The onset of

6L ' it 12 1" 4 i measurable power at low guide field is related to the increase
AXIAL MAGNETIC FIELD kG) . in transmitted current with increasing B,. The subsequent drop

Fig. 12. Axial velocity spread induced by first-order wiggler field gradi- in power at 10 kG is consistent with the transition to unstable
ents near gyroresonance. The wiggler field amplitude is the same as in orbits and the rapid thermalization of the beam. Above
Fig. 10,B, 0.70 kG. gyroresonance (Bo - 11.5 kG), the wavelength of the radiation

produced by Group 11 orbits will decrease as the axial velocity
on pump strength is shown in Fig. 11 for guide fields above is increased. The 5 mm cutoff imposed by the filter corre-
(15 kG) and below (10 kG) the transition field. Note the sponds to the theoretically predicted value of B, = 12.5 kcG
striking difference in the behavior between the two cases as which is in close agreement with the experimental value. The
the pump level approaches a critical value at which the orbits comparatively slow rise in radiated power from 12.5 kG to
become unstable. The open circles on the graph indicate field 15.0 kG is consistent with the progressive improvement in
values at which the beams have the same average velocity. In beam quality shown in Fig. 12. The decrease in power at
general, the code results show that for beams with the same higher values of B, corresponds to a loss of gain as shown in
average velocities, operation below the transition field or Fig. 7. Note that the power production below gyroresonance is
closer to gyroresonance leads to larger velocity spreads. not as peaked in guide field as above gyroresonance. This

The effects of operating near gyroresonance are shown in result is in agreement with the flatter gain curve in Fig. 7 and
Fig. 12. Since the resonant denominator in (5) acts to enhance the more rapid beam thermalization shown in Fig. 12.
the effects of field differences, the beam becomes more sen- Data have been compiled over a range in pump field extend-
sitive to field variations near the gyroresonance. This rapid ing from 0.2 to 2.4 kG. The salient features of the observed
beam thermalization near gyroresonance will act at some point parametric variation can be summarized by identifying =he
to offset the effects of increased ul in producing an enhanced pump strength at which thresholds for measurable power and
gain. The cold-beam limits shown in Figs. I I and 12 indicate the point of maximum power occur as a function of the guide
the ranges of field strengths where this is likely to occur. field. The risultant plot is ohown in Fig. 14.
Experimentally, peak RF emission occurs in the regions before Rewriting (5) yields the following relation between the
the cold-beam limit is reached (cf. Fig. 13). The effect of these transverse and longitudinal electron velocities and the pump
velocity spreads on the interaction is not clear, because the and guide fields.
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2. -L. I go ( .is, Y) negative-energy, space-charge wave and the TE,, waveguide

1 '2" --- 1 _81 . 34 mode indicates that the intersections of interest occur at

2.0 i191. 1 60 and 117 GHz, respectively. Wavelength measurements at

.6 . P - 2. the peak power points using both cutoff filters and a grating
- 4., ' spectrometer indicate a frequency of 80 GHz which is also in

. 14 ".'- q / agreement with the dispersion analysis. Independent measure-
, r ments have established that the observed radiation pattern is

OL .-.1" consistent with that of the TEi1 mode.

0.4- 10, 13 "-%o, . / Calculations of spontaneous emission suggest that the
* " uncorrelated noise spectrum corresponds to a few *tens of

0 4 6 1 '0 , 14 16 1a milliwatts of radiated power. Direct measurement of the
so (kG) emission in the absence of a pump field shows less than 10 W

Fig. 14. Signal variation with pump and guide magnetic fields. Signal of total power in the range of a W-band detector (60-110
onset, maximum, and cutoff are plotted as triangles, circles, and GHz). Calorimetry measurements of the peak observed emission
squares, respectively. The lines correspond to constant values ofj3. detect 0.68 J, corresponding to -35 MW in a 20 ns output

pulse and an instantaneous efficiency of 2.5 percent. This
B, = (0j/0z)B - (mc2 kw/e)01 -y. (13) suggests at least fifteen power e-foldings, corresponding to a

gain length of approximately 4 cm. Theory (Fig. 7) suggests
From this equation, it is evident that the conditions for con- a gain length of several centimeters, in good agreement with
stant transverse and axial velocities are defined by pairs of this value.
straight lines which intersect the horizontal axis at the resonant

* guide field. The free-electron laser interaction is much more V. SUMMARY

strongly dependent on these velocities than on particular values Initial measurements on a new high-power, short-pulse.
of magnetic field. Specific experimental features should lie on millimeter-wave free-electron laser experiment have been
straight lines characterized by unique values of transverse completed. These measurements have demonstrated high-power
velocity. Note that the lines in Fig. 14 are not best fits to the superradiant emission, qorresponding to an instantaneous con-
data, but are calculated using (13) assuming particular values version efficiency of electron beam energy into millimeter-wave
of transverse velocity. The observed agreement between radiation of 2.5 percent. This efficiency is an order ofmagnitude
experimental results and calculations based on ideal single- improvement over that seen in other millimeter-wave free-
particle trajectories is another indication that the electron electron laser devices. Computer simulations and experimental
beam is very cold. measurements have shown that the quality of the electron beam

The magnitude of the radiated power in the free-electron extracted from the apertured diode is well in excess of that re-
laser interaction is related through the gain to the transverse quired to sustain a collective beam-wave interactign. The
velocity and has only a weak dependence on the magnetic experiment has shown a regular parametric dependence on
fields which occurs though 411' [see (6)]. The cyclotron guide and pump fields both above and below gyroresonance,
maser instability, on the other hand. is sensitive to particular a dependence that had not been previously reported. Measure-
values of the guide field as well as the transverse velocity. ments of radiation onsets and cutoffs agiee with predictions
Previous intense beam cyclotron maser experiments [24] -[281 based on single-particle orbits and a new cold-beam Raman
have typically shown a power increase of two to three orders theory. The observed scaling of wavelength, emitted power.
of magnitude at specific axial guide fields. In light of this, it and gain are in excellent agreement with the assumption of a
is worth noting that the peak power observed along the Raman free-electron laser interaction. Computer simulations
O. = 0.21 lines in Fig. 14 is constant to within a factor of two of the nonlinear effects in the experiment show good agree-
for all the guide fields tested. The differences in peak power ment with the power scaling and efficiency observed in the
appear to be related to beam quality issues. The highest powers experiment. The simulation results taken together with the
are observed above 15 kG where the injected beam quality is realistic wiggler analysis indicate that thermal effects are limit-
highest and the thermalization effects of the gyroresonance ing the experimental efficiency. It is not yet known whether
are minimized, this limit is imposed by the injected beam quality, the wiggler

The measure of the constancy of 0, along the lines defined gradients, or by some other mechanism.
by (13) is the radiated wavelength. To examine this scaling,
the wavelength of power generated at 15 and 18 kG was ACKNOWLEDGMENT
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Study of gain, bandwidth, and tunability of a millimeter-wave free-electron
laser operating in the collective regime

S. H. Gold, W. M. Black,a) H. P. Freund,b) V. L. Granatstein, R. H. Jackson,c) P.
-*" •C. Efthimion,b) and A. K. Kinkead

Naval Research Laboratory. Washington. D.C 20375

(Received 15 March 1983; accepted 12 May 1983)

Frequency-resolved measurements of the emission of a collective free-electron laser operating at
millimeter wavelengths have shown emission spectra that agree well with theoretical predictions
for the collective free-electron laser instability. Broad tunability, moderate emission linewidths,
and high single-frequency gain have been observed. In addition, adjusting the axial field in the end
region of the interaction has been found in some cases to cause a large increase in measured power
and efficiency.

I. INTRODUCTION II. EXPERIMENTAL APPARATUS

The free-electron laser (FEL) uses a relativistic electron The basic configuration for these experiments is shown
beam traversing a periodic transverse wiggler magnetic field in Fig. 1. A 1.25 MeV (y- 3.4), 1 kA, 6 mm diameter solid
to amplify radiation-at a wavelength (A) corresponding ap- electron beam traverses an 11 mm i.d. stainless steel drift
proximately to a double Doppler upshift of the wiggler peri- tube under the combined influence of an axial magnetic field
od (A.). The radiation and wiggler fields combine to bunch and a transverse wiggler magnetic field. The electron beam is

0 and decelerate the electrons, and thus to produce gain at the provided by a pulseline accelerator with 50 nsec pulse dura-
radiation wavelength A -A /2r 2 , where y is the relativistic tion and _ 10- 2 Hz maximum repetition rate. Through use

* mass factor. This interaction can operate at any wavelength, of a special diode design, the electron beam is produced with
and offers the potential of simple, broadly variable tuning of an extremely low velocity spread (A#:/.l 0. 1%).' The re-
the radiation frequency through variation of the axial veloc- suits of a trajectory integration code,3 which includes the
ity of the electron beam. variation of the three-dimensional wiggler fields over the

In the millimeter-wave regime, the FEL interaction, us- electron beam radius, have shown that low velocity spreads
ing intense relativitic electron'beams of energy approxi- (< 1%) are preserved into the interaction region through
mately 1 MeV and very low velocity spread, can proceed via careful tapering of the strength of the wiggler magnetic field
a collective process that offers the potential of high power over an entry region of seven wiggler periods. This statement
and high gain at moderately high intrinsic efficiency.' These is valid provided that the axial guide field is not too close to
properties of the collective FEL interaction have been pre- its gyroresonant value and the wiggler field is not too large.

S viously demonstrated in a superradiant amplifier (35 MW at For some of the larger transverse velocity cases discussed
-75 GHz, 2.5% efficiency, - 1 dB/cm gain), and were re- later in this paper, radial wiggler gradients are expected to
ported in earlier publications.2"3 On other experiments at produce an axial velocity shear in the range of 1% to 2%.
lower powers and efficiencies, Birkett et al.4 have reported Such velocity shear is not the same as a true beam tempera-
the measurement of five discrete emission wavelengths from ture, and its effects are not completely understood theoreti-
experiments operating at different currents and voltages on cally, but at some level such macroscopic spreads may be

C three different machines, all using 8 mm wiggler periods;
* these wavelengths, ranging from 0.4 to 1.8 mm, have shown

the expected 1/r 2 dependence on electron energy." WIGE w,4 OW

We report here on new measurements using frequency- COIL RIF TUBE

resolved diagnostics that have for the first time explicitly , i, /
demonstrated the predicted broadband tunability of this in- CATHD

teraction on a single device. Additionally, these measure-
ments have demonstrated both broad gain bandwidth and iliii lll v ec IC II
high single-frequency gain, as a superradiant amplifier oper- CHAMBER

ating in the collective regime. We also report on measure-
ments that give evidence of an improvement in the previous-
ly reported powers and efficiencies by tapering the end HICA

conditions of the interaction. S MTI R R."t

. sPermanent addres: Oeorge Mason University, Fairfax, Virginia 22030. V sT c Rs
'Permanent address: Science Applications, Inc., McLean, Virginia 22102.
' Permanent address: Mission Research Corporation, Alexandria, Virginia FIG. I. Diagram of the free-electron laser experimental configuration.

22312. showing the system used to make frequency-resolved measurements.
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expected to degrade the interaction. + v I -V'- )C,

The axial field (B.) is variable up to 20 kG and is used where f2, --eB,/ymc. Equations (51 and 16) give rise to two
both to confine the electrons and to provide gyroresonant separate classes of orbits. Figure 21a) shows the steady-state
enhancement of the effects of the wiggler magnetic field. The orbits f' " typical experimental parameters for an ideal

* wiggler magnet provides a helically varying transverse mag- wiggler (i.e., radial gradients neglected), as given in Eqs. 151
netic field (B,) of period A. = 3c and 0-2 kG amplitude and (6), as well as the steady-state orbits in a fully realizable,
over a uniform interaction region of 63 cm, with adiabatic three-dimensional wiggler.'" Evidently, for these param-
transition regions at both ends. Special care was taken in the eters, the discrepancy between the ideal and realizable
calibration ofB,, Bis andr for the present paper, since com- wiggler models is small for axial guide fields of the order of
patibility of these values is essential to produce the correct 12 kG or greater. However, such a conclusion breaks down
electron dynamics, and because of the great sensitivity of the for axial fields below the 10 kG level. A one-dimensional
output frequency to these experimental parameters. itr xa ilsblwte1 Glvl n-iesoatheory of the gain is thus expected to be adequate for suffi-Spontaneous emission at the injection end of the inter- ciently large values of the axial guide field. This condition isaction region is highly amplified by the FEL interaction. The
amplified radiation is then radiated into an anechoic expected to apply to all the experimental conditions investi-
chamber by means of a large (30 cm W.) microwave horn. gated in this paper.chamer y mens f alarg (3 cm ~d. mirowae hrn.It should also be noted that the effects of the dielectric

S m a ll frac tio n s o f th is ra d ia tio n a re sa m p led b y a p y ro e lec - Itl ari u lti o so e e h a t te e ff ec ts o f th e e lec tric

tric detector with a high-pass filter, to monitor total power in polarization of the beam have been neglected in the electro-

the band of interest, and by a millimeter-wave grating spec- magnetic dispersion relation (2). This is valid as long as 2 /(7yw' )<1k.v -,0ol(k,,v,), which is relevant to all the
trometer,5 in order to perform spectrally resolved measure- o int eres thi s paer ic is rele vant o a the

ment. Te mllieterwav grtin spetroete is cases of interest in this paper. It is clear from Eq. (1) that the
ments. The millimeter-wave grating spectrometer is p ee c ft ewgl r adg i efed a ea feto h
equipped with three W-band crystal detectors, and is com- presence of the wiggler and guide fields have an efect on the

pletely calibrated over the range 60 to 105 GHz. Its resolu- characteristics of the space-charge wave. This effect is mani-
tion is approximately 1 GHz. The use of three simultaneous fested through the presence of 0, which reduces to unity if
channels in the spectrometer.permits the efficient accumula- either B. or B, vanish. The combination of a wiggler and
tion of spectra with a limited number of discharges. It also axial guide field, however, results in significant deviations of
permits simultaneous observations at three discrete frequen- 0 from unity, which is equivalent to substantial changes in
cies of the effect on the emission of any variation of experi-
mental parameters. (a)

l. THEORYGROUP I GROUP 11

The operating frequency of an FEL in the collective

regime is determined from the intersection of the negative
energy electrostatic beam mode dispersion relation,w ) (k + k . )v, - K , , , 0. s /

co=(~k~), -x,, () ~zREALIZABLE WIGGLER~

and the electromagnetic waveguide mode dispersion rela-
tion, - - - -

*) = c2k 2 + WC. (2) IDEAL WIGGLER

Here w,. is the cutoff frequency of the particular mode of
interest, k. (=21r/A ) is the wiggler wave vector, and xv, is 4 8 2 1 2O 24 28

an effective plasma frequency, where6  a, kG)/2 1/2KM1Wb/Y'
2 Y~V,)O' 2  (3)

' 17, 0' (1r~6~ + 0 2 00 - k.v,] ~ (4) s(b)
)b is the beam plasma frequency, 4

7 ,M (l -v 2 c 2)- 1'2 , yM (I - VzC 2)- 2,

#I v /V " GROUP Ifo,-eB,/7ymc, W L 2 GROUP 11
Also note for later use that fl, -v, Ic and 0, mu, 1c. Compu- I

tational analysis of electron orbits in the equilibrium fields' 0 4 a 2 6 20 24
has shown that the electrons may be assumed to be executing - 4

steady-state helical trajectories. For such trajectories, the -2
parallel and perpendicular components of the velocity are
given by7 '1 FIG. 2. Plots of (al 5, and Ibl 0 versus axial guide field for 8, = 630 G.

o- 5) y = 3.4. The axial velocity is shown for both ideal and realizable wigglers.
12, v /(D -k .v,) ( The dashed lines describe unstable orbits. 0 is calculated for an ideal

and wiggler.
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the effective plasma frequency. Typical variation of 0 vs B. wiggler or the radiation fields) and describes a monoenerget-
is shown in Fig. 2(b) for constant y and B,, assuming an ideal ic electron beam executing orbits which are approximately
wiggler. Evidently, O> 1 for group I trajectories (i.e., helical. 7  However, good qualitative agreement has pre-
k. v, > 2,). However, the situation is more complex for the viously been found between this type of analysis and the ex-
group II trajectories (i.e., k. u < 2o), for which 0O<0 when- perimental results,2' and all cases considered in this work
ever (I - IC u /c2 o2f < k. v,. This is the case for all the data correspond to operation in the collective regime.
presented in this paper. In this limit the effective plasma
frequency (Kv) is imaginary, and there is no contribution to IV. EXPERIMENTAL RESULTS
the real part of the frequency of the electrostatic beam mode Using the experimental setup described previously,
due to the electric polarization of the beam. Another way of measurements were made of the emission spectrum. Figure 3
stating this is to observe that in the beam frame, the electro- shows three spectra. The top spectrum, for B, = 13.1 kG
static mode is purely growing (i.e., zero real frequency). This and B, = 910 G, corresponds to#, -0.34. In this case, only
point is discussed in more detail by Freund et a l .' As a conse- coupling to the fundamental TE,, mode of the II mm i.d.
quence, the resonant frequency satisfies Eq. (2) and drift tube is expected from Eq. (7). The predicted frequency,
a, = (k + k, )v2 . This yields 67 GHz, is in good agreement with the observed radiation.

?,= v [I ±L8 O 2 //k 'c 2)/2], (7) The middle spectrum, with B, lowered to 630 G, corre-

* where w is assumed real. For the parameters discussed in this
paper, and over the emission frequencies observed, only the
upper intersection is of interest. Note that in the limit in I,-1 " 3'G

which the waveguide effects are negligible, this expression 40

reduces to w = fl (l +fi,)7 k. c.
It should be stressed that while the plasma frequency I [ '

40 does not appear in the resonant frequency (7) for 0 < 0, the
interaction. may still be in the collective regime. In order to 0 I
demonstrate this we note that the spatial growth rate [Im(k)]
is given approximately by the dispersion equation6' '

(6k 2 - xKl)(k - k,, - K+ + waJ(6z)1k - k K_ + wair,
I l * .

a - ( 1 B/l)(wIc)W(bk - k. + flo/v), (8) , -13.1 kG

wfiere 6k =k + k. - wlv,, 20, - a

K - 0 , .o) l
K+-=1 l+ai I

- A /K ' + 2 o__ n2_o. (/,9) 0 1o

c2 _1oz

and AK -[1'2o - 0~{1 - ,86)]/u,. Note that Eq. (8) is obtained..

in the limit in which ow /y'2, and describes the coupling
between the electrostatic beam modes (for which6k= ±k) A K )
and the two branches of the electromagnetic dispersion -0I 8,- I kG

equation given by 6k = k, + K± - ev,. The strong go I, -1.4 kO

pump regime is found when the electrostatic wave does not
* make a strong contribution to the growth rate, that is, when

Jbk I >l i. In this limit, Eq. (8) simplifies to a cubic dispersion I
relation,' and the strong pump condition can be shown to be
equivalent to requiring that IKI <8 k ?k , /2. The collec-
tive regime is found in the opposite limit, in which 16k I :5 IKI
and the interaction proceeds via induced scattering between I
the beam mode and the wiggler field to produce the output ' I
radiation. However, it is difficult to obtain an analytical so-
lution to (8) when 0<0 andK is imaginary. In this regime the £

induced scattering process involves an unstable beam mode *

and numerical solution shows the collective regime to occur I

for a 70 "s

IK!;t 1 ,, k, fl.. (10) FREQUENCY (GNl

It should be remarked that the theoretical development im- FIG. 3. Free-electron laser emission spectra for (top) B,- 13.1 kG,
B, - 910 G; (center) B, = 13.1 kG. B, - 630 G; and (bottom) B, = 16.0

plicit in Eq. (8) is based upon a model which is one dimen- kGOB, - 1.4kG.Onlystatisticalerrorbarsareshown.Theestimatedsyste-
sional (i.e., no finite radial effects are included in either the matic error is 2 dB.
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sponds to 9, -0.27. Equation (7) predicts coupling to the TM,

two lowest waveguide modes, the TE,, at -96 GHz and the 639 GN
TMo, at -78 GHz. The spectrum shows two main peaks, _ TM01 TE1_

centered at frequencies that are in good agreement with 70.7 GHz T2,

these predictions. Additionally, the lower-frequency emis- -
sion is observed to be predominantly radially polarized, as D 75.2 GHz

TE1,would be expected for a TM,, mode pattern, while the high- d TM 0,

frequency peak is unpolarized, as expected for a (circularly 5 j TEll

polarized) TE,1 mode. The bottom spectrum has B, in- - -
creased by 20% to 16.0 kG, with B, increased to 1.4 kG in 0
order to keep 6, approximately unchanged from the pre- 1. 79. G4z TM,
vious case. This spectrum is virtually identical, although its
amplitude is doubled. Doubling is also seen in the pyroelec- 0 ,E,,
tric detector signal. This doubling can occur because gain TI, 1

and saturation are functions of B, as well as ofgL .6.12 84.2 GHz

These results demonstrate that the emission spectrum is TMo . A,

strongly affected by changes in # at a single B,, but is virtu- 95.0 GHZ TM 0 1 a

ally unaffected by a large change in B, at constant #. This is
strong evidence for FEL emission rather than the cyclotron 0.2 0.4 0.6 0.8 1 0 1.2
mechanism seen in some other experiments. ,"- In addition, s, (kG)
the observed emission features do not agree with calcula- FIG. 4. FEL tuning-emission at six frequencies as a function of B. for
tions based on coupling to the positive energy cyclotron (gyr- B, = 13.1 kG. The predicted position of peak emission at-each frequency
otron) modes. for the TE,, mode (right arrow) and TM, mode fleft arrowl are shown.

Tuning of the spectrum is most easily demonstrated by
making single frequency observations of the output power as The broad single-frequency tuning peaks shown in Fig.
a function of experimental parameters. This procedure fac- 4 result from the amplification of broadband spontaneous
tors out calibration errors for each single frequency sweep so emission by the FEL interaction. For an FEL operating on
that the only residual errors are because of discharge-to-dis- group II orbits with 0 < 0, theory predicts broad gain band-
charge nonreproducibility of the experiment, which can be widths, since the interaction is coupled to a purely growing
dealt with statistically. In essence, an FEL is tuned by vary- electrostatic beam mode.' This broad gain bandwidth, am-
ing the axial velocity of the electron beam through the inter- plifying initially broadband spontaneous emission, results in
action region. Due to the complicated relationship off, on the moderate emission linewidths seen in Fig. 3, even after
both B, and y [see Eqs. (5) and (6)], this was most easily done the estimated 60 dB of amplification of the original sponta-
experimentally through variation of B,. neous emission level has taken place.

Figure 4 shows power at six frequencies between 60 and Another presentation of the frequency tuning is shown
95 GHz, as a function of B,. Each curve is plotted in the in Fig. 5. Here, the six frequencies of Fig. 4 are plotted versus
same power units, subject to the estimated ± 2 dB accuracy the calculated value ofi,6(l + 6, )y2c/,A. at the peak of each
of the separate single-frequency calibration factors. Typical curve in Fig. 4. For a coupling at the light line, the points
statistical error bars for these data are smaller than the sym- should lie along the top curve. The lower lines indicate the
bols used to locate the points. B, is held constant at 13.1 kG. calculated couplings to waveguide modes. The line corre-
It is seen that for each frequency, the output power is maxi-
mized at a particular value of B,. The data display a mono-
tonic trend; that is, the lower the frequency of interest, the
higher the optimum wiggler field. Through variation of B,
by a factor of 2, superradiant emission is optimized over a 100
50% variation of frequencies. The pair of vertical arrows - TI
associated with each frequency indicate the calculated a so-

:. wiggler field to maximize emission for the TE,I mode (right QQT
arrow) and the TMo, mode (left arrow). In most cases, the X o
coupling seems to be strongest for the TE,I mode, as would
be expected for a circularly polarized wiggler coupling to an 7 °

"",- axicentered electron beam. Note that variation of B, in order
to tune the frequency will also affect the total FEL emission X
through its effect on the gain and possible saturation of the * 7 8 a to 1 12 100
FEL interaction. The wiggler fields that optimize emission P, + n,2 ,e/k. Iee-,)

in the range 75-80 GHz are the fields that maximize total
high-frequency (f> 60 0Hz) emission, as measured by the FIG. 5. Emission frequencies plotted against #,I 1 + g, yc/,. calculated

pyroelectric detector. That is, the larger emission seen at from the best measured value of B, at each frequency The calculated fre-

75.2 and 79.5 GHz is believed real. quencies of TE,, and TM., modes are shown.
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i"
sponding to the TE, mode fits most of the points fairly well. uniform region of the wiggler. Thus, the exponential growth

The only direct means to measure the gain of a superra- seen as the system is lengthened is believed to characterize
diant amplifier is to vary the length of the interaction region, the gain in the uniform region of the interaction.

and to observe the change in frequency-resolved output pow- The data in Fig. 6 display a second interesting effect.
er as a function of interaction length. Since the wiggler mag- which is believed due to the nonuniform end region affected

* net is one continuous coil. the length of wiggler magnet tra- by the gradual decrease in axial field. The peak power at 66
versed by the electron beam was varied by changing the GHz appears to occur when the end of the axial field magnet

length of the axial magnetic field. Since .12, is initially greater is located near the end of the uniform wiggler section ( - 10
than k,,. vz for the cases discussed in this paper, the falloff in cm), rather than when the axial field is held constant

B. associated with the end of the axial magnetic field sends throughout the wiggler. This increase in measured single-

the electron beam to the drift tube walls [see Eqs. (5) and (6) frequency emission is accompanied by a comparable in-
* and Fig. 2(a), and note that the electron orbital radius is crease in total high-frequency emission. A similar enhance-

given by # / /f.. k, )]. ment in emission as the length of uniform axial field is
Figure 6 shows the emission at a single frequency, 66 decreased (last axial field coil at - 10 cm) is found at several

GHz, as a function of the length of the axial field for other combinations of axial and wiggler fields. A particular-
B. = 12.1 kG and B, = 630 G. The lower axis corresponds ly interesting case is illustrated in Fig. 7, which shows a corn-

to the distance of the last connected axial field coil from the parison of the emission spectrum at B. = 16.0 kG and
* end of the wiggler exit taper. As the axial magnetic field is B, = 1.4 kG for the uniform axial field case, with a partial

lengthened (last energized magnet coil changed progressive- spectrum for the case of B, shortened to the length produc-
ly from - 40 to - 20 cm), the output power at 66 GHz is ing the maximum effect in Fig. 6. For these experimental
seen to exponentiate. The rate of growth is approximately parameters the total power in the emission spectrum appears
0.5 dB/cm. This is about 10% of the maximum spatial to have increased by a factor of 2, accompanied by a small

growth rate calculated from a numerical solution of the dis- shift to lower frequencies. The pyroelectric detector data
* persion equation given in Eq. (8). The discrepancy can be due agrees with this factor of 2 increase in frequency-integr.ted

to the fact that effects such as the fill factor, finite geometry, power. For this case, shortening the region of uniform B,

finite temperature, wiggler gradients, and mode competition and creating the nonuniform end region increases the total
have been emitted from 18). Also, note that the gain measure- high-frequency emission (f> 60 GHz) measured by the py-
ment was not performed at the peak of the experimental roelectric detector by approximately 50% over that pro-
emission spectrum. duced by any combination of wiggler field and uniform axial

The interpretation of the experimental gain measure- field. Based bn a comparison with pyroelectric detector mea-
ment is complicated by a very gradual decrease in axial field surements performed at slightly higher currents and differ-

that begins tens of centimeters upstream from the end of ent axial and wiggler magnetic fields, whose total powers
magnet. This results in a gradual increase in fl and decrease and efficiencies were determined calorimetrically, 3 this in-

in f, that modifies the interaction parameters over this end creases the estimated overall experimental power to near 50
region, increasing the gain, but lowering its frequency. The MW at 5% efficiency. It should be noted that this results in

length of this nonuniform end region of constant B, but de- larger experimental efficiencies than those predicted for the

* creasing B, is constant, provided that the beam is disposed of experiment, at lower axial fields and without an axial field
within the uniform portion of the wiggler magnet. This will end taper, by a particle-in-cell computer code that includes

be true when the last energized axial magnet coil is within the
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right to left. The position of the wiggler magnet is indicated below the plot. connected B, coil at start of wiggler exit taperi.
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The nonlinear evolution of free-electron lasers in the presence of an axial guide field is in-
* vestigated numerically. A set of coupled nonlinear differential equations is derived which

governs the self-consistent evolution of the wave fields and particle trajectories in an ampli-
fier configuration. The nonlinear currents which mediate the interaction are computed by
means of an average over particle phases, and the inclusion of fluctuating space-charge
fields in the formulation permits the investigation of both the stimulated Raman and Comp-
ton scattering regimes. The initial conditions are chosen to describe the injection of a cold,
axially propagating electron beam into the interaction region which consists of a uniform
axial guide field and a helical wiggler field which increases to a constant level adiabatically
over a distance of ten wiggler periods. After an initial transient phase, the results show a re-
gion of exponential growth of the radiation field which is in excellent agreement with linear
theory. Saturation occurs by means of particle trapping. The efficiency of the interaction
has been studied for a wide range of axial guide fields, and substantial enhancements have
been found relative to the zero-guide-field limit.

I. INTRODUCTION The motivation for the present work is to investi-
gate the effects of the guide field on the nonlinear.

The use of axial guide magnetic fields in free- regime of both the stimulated Raman and stimulat-
electron-laser (FEL) experiments has generally been ed Compton scattering regimes of FEL operation.
restricted to low-energy (- 1 MeV) and high-current To this end, a set of coupled nonlinear differential
(- I kA) devices in which the axial field is necessary equations is derived which describes the evolution of
in order to confine the electron beam. As a conse- both particle orbits and the electrostatic and elec-
quence, a great deal of theoretical work has been de- tromagnetic fields. The nonlinear currents which

* voted to the calculation of electron orbits,' 2 spon- mediate the interaction are computed from the mi-
taneous radiation (i.e., noise) spectra,3 and the linear croscopic behavior of an ensemble of electrons by
growth rate3- 9 in the presence of an axial guide means of an average of the electron phases relative
field. As shown in these works, a fortuitous conse- to the ponderomotive wave. This is equivalent to a
quence of the presence of the guide field is that both time average over the electron orbits which, in turn,
the noise spectrum and the linear growth rate are is equivalent to an ensemble average over the micro-
enhanced. Such enhancements are due to an in- scopic electron distribution. Thus although the
crease in the transverse electron velocities and a de- macroscopic electron distribution does not explicitly
crease in the natural response frequency of the elec- appear, the formulation is equivalent to a fully ki-
trons. In the latter case, the natural frequency can netic treatment of the interaction and is capable of
become comparable to the frequency of the ponder- describing effects such as particle trapping in the
motive force which results t:om the beating of the ponderomotive wave. This is in contrast to the non-
radiation and wiggler fields. When this occurs the linear analysis described recently by Friedland and
linear gain can become very large, and the interac- Bernstein'0 which is based on the cold-fluid model.
tion is analogous to that of driving an oscillator at These equations are solved numerically for a con-
its natural frequency. In view of the possible figuration in which a uniform, monoenergetic elec.
enhancements in the gain, the study of the nonlinear tron beam is injected with purely axial velocities into
phase of the interaction assumes an added impor- the interaction region which consists of a uniform
tance with a primary focus on possible enhance- axial guide field and a helical wiggler field which in-
ments in the saturation levels of the instability and creases adiabatically from zero in ten wiggler
the efficiency of the interaction, periods. The analysis is performed in one spatial di-
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mension, although the electron trajectories are in- equations are given in Sec. IV, and the conditions
tegrated for three dimensions in the velocity. In ad- under which efficiency enhancements occur are
dition, since the problem of interest is that of an described. A summary and discussion is given in
FEL amplifier, only a single electromagnetic and Sec. V.
electrostatic wave is included corresponding to the
choice of the fastest growing mode. Thus the
analysis self-consistently describes the linear and The physical configuration we employ is one di-
nonlinear phases of the interaction of a uniform mensional in that spatial variations are restricted to
electron beam with a helical wiggler field in one di- the z direction. The static magnetic field is taken to
mension. The results of the simulation show, after be of the form
an initial transient phase, a region of exponential
growth of the radiation and space-charge fields B(W)=Boe, + B.w([ecosi wz)+esi(kz)]
which is in excellent agreement with the linear If)
theory3- 9 over the entire range of parameters stud-
ied. The onset of the nonlinear phase of the interac- where Bo and B. are the amplitudes of the axial
tion appears quite suddenly, and saturation occurs guide field and the wiggler field, respectively, k.
by means of particle trapping. Most significantly, (--21r/X w, where ,, is the wiggler period) denotes
substantial enhancements in the interaction efficien- the wiggler wave vector, and it is assumed that
cy are found to occur. d InB,/dz <<k.. Thus we allow the wiggler ampli-

The organization of the paper is as follows. The tude to vary slowly in z while holding the period
general equations are derived in Sec. II. Since the constant. In practice, we shall allow BW(z) to vary
actual adiabatic entry of the electron beam into the only over 0 < z < l0k., after which it shall be held
wiggler is included in the analysis, we digress in Sec. constant, so that d lnB, /dz -_0. k. The variable
III to describe the types of orbit which result in the amplitudes and periods of the radiation and space-
absence of a radiation field. The numerical solu- charge fields are included by means of the vector
tions to the complete set of coupled particle-field and scalar potentials

8,(z,t)=SA(z) ,cos fodz'k+(z') wt -isin :odz'k+(z')-ot], (2Y

8't(z,t)=84(z)coS f:'k (z') - (t (3

where o) is the wave frequency, 8A (z) and 8(z) are 7;(z,to)--t io+
the amplitudes of the vector and scalar potentials, 0 v3 (z',to)
and k + (z) and k(z) are the wave vectors. Note that
by the choice of parameters (i.e., primarily the pump The system is assumed to be quasistatic (i.e., in a
strength, beam density, and axial field) the ampli- temporal steady state) so that particles which enter
tudes and wave vectors will be slowly varying func- the interaction region at times to separated by in-
tions of r, however, no such assumption is made tegral multiples of a wave period will execute identi-
a priori. cal orbits." As a result Vi(zto) =7j(ztjO), where

The microscopic current density can be written as tio -tjo+21rN/Ao for integer N.
the following sum over individual particle trajec- Substitution of the microscopic fields and current
tories: density into Maxwell's equation yields

IAr L N8(t - 1(zt))d 02 2
,1 (Z't)I u(Z, z ) I Sa + -k 8a

(4) 40 VC0 V)c~-V 2sinik-- , (6)
where Nr is the total number of electrons within the c2 ) 3
interaction region of length L, nb is the average elec- ,d.. +/a _ uo 1 uo sinb+ ucos b
tron density, V(z,to) is the velocity of the ith elec- 2k 2 -(k '1'a) - -'i-"\ 0 ,
tron at position z which entered the interaction re- dz + C3
gion (i.e., crossed the z =0 plane) at time tio, and (7)
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(8) (. /O!- .9 (12)

So s \represents a phase average where N,, denotes the

2kind(k a80)=-2-Lvo---- / (9) number of electrons in a single wave period. Thus
dz c2  V3  following Sprangle et al." the quasistatic assump-

tion has permitted the reduction of the problem to

where an average over a wave period has been per- the consideration of the initial beam segments for

formed. In Eqs. (6)-(9), w) . 41re2 nb/m, v 0 is the which steady-state orbits of the beam electrons are

initial axial velocity of the electrons, 8a me 8A /mc 2 , described by particles which enter the wiggler region
&.i~e Mt/mc2, within a wave period. The actual length of these

segments is 2ruo/t so that N, =2rVuo/wL. For

1b=t00+ fzdz'(k+,.+k.-Wo/V 3 ), (10) sufficiently large N,, the discrete nature of the
o phase average (12) can be replaced by an integral

,t d0+ foz'(k -(a/u 3), (11) over the initial phases ibo as follows:

0 =---wto is the initial phase, and (u,,v 2 ,u3) are the (,)_--- fd d 0 3-. (13)
components of the electron velocity in the wiggler 2

frame defined by the basis vectors F, In this form the field equations are identical to those
=ecos(kwz)+e'ysin(kwz), e2 =-e sin(kz) derived by Sprangle et al. .
+icos(ktz), e3 =i . Observe that it has been im- In order to complete the formulation, the electron
plicitly assumed that the electron beam is monoener- orbit equations in the presence of the static and fluc-
getic and that all electrons have the same initial axi- tuating fields must be specified. These equations are
al velocity. In addition, of the form

d = 0 " +c -

P- -kv3 +MC k + jsini'+cost-b-8a (14)dz" 3  V3 ".

d P2= -k.U3 p_mi.+mc .a-k+ Sacoso-sintib-8a , (15)
~d FI [ 3 3 dz

where P1.2 YM1. 2, 0.w eBo./mc I, Y="( 1 -U 2 /c2) - 1/2,

d Vo2  + C & k V - 3  "'sin V,+ V2Co S d)
dz V3 k+-a- C2

- d C2 d s (1
8 d-a(ucos-u 2 sin k)- 6 sini -.cos01 , (16)

rU3 V 7 , U3  dz

and y,' (I-u'/c2 )- . Both the linear and non- homogeneous wiggler under consideration is neither
linear evolution of the FEL amplifier, therefore, are curl nor divergence free and is a reasonable approxi-
included in Eqs. (6)-(9) for the field quantities and mation for a realizable wiggler field only as long as
(14)-(16) for the orbits of an ensemble of electrons k,r << I and d InB,(z)/dz <<k., where r measures
having initial phases - ir : 0o< 7r. the radial displacement of the electron trajectories

from the axis of symmetry. The question we exam-

111. SINGLE-PARTICLE ORBITS ine in this section, therefore, is the effect of the adia-
batic increase in BW(z) on the trajectories of elec-

Since an adiabatic entry region into the wiggler is trons which enter the wiggler with purely axial
included in the analysis, it is useful to consider the motion.
form which the single-particle orbits take as they The appropriate equations of motion follow im-
emerge into the constant-B. region as a function of mediately from (14)-(16) in the absence of fluctuat-
B0. It should be remarked here that the radially ';g fields,

E- 5
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d [V2 (17)..

dkv 3  (182= .-a' 103 y

d V"" df v (19) -

dz3 V3

where y is now a constant of the motion, and fl,. is
a function of z. The steady-state (or helical) orbits '2

are obtained by requiring the derivatives to vanish-in FIG. 2. Plot of the single-particle trajectories vs axial
the constant-B, region and results in solutions position of flo/ykc =0.0, f./ykc =0.05, and y=3.5.
v = --uflv 11 /(flo-ykwv11 ), v2 =0, and V3=Vll,

where v11 is a constant determined by conservation case illustrated) at which point there is a transition
of energy, i.e., v +vl -(1 - 2 )c 2. This equation to the unstable orbits. The second class of stable
is quartic in vii and describes at most four distinct trajectory (denoted by group II) is characterized by a
classes of trajectory, of which one is .haracterized monotonically increasing axial velocity with B 0.
by motion antiparallel to B, and will be ignored. Of In the integration of the orbit equations it shall be
the remaining three classes of trajectory, one is un- assumed that
stable. It is, therefore, difficult to propagate a
coherent beam on these orbits, and it is of interest to
determine whether, by adiabatic tapering of B., BB[ I - cos(kz /20), 0 <z < I l0X

' these orbits can be avoided. The three types of orbit B (z, z > M. (20)
. propagating parallel to B0 are shown in Fig. I, in B w  (20)

which we plot ull vs flo/yk~c (i.e., the axial field
strength) for y= 3.5 and fl./ykc=0.05. Observe
that of the two classes of stable orbits, one is charac- which provides for a smooth, adiabatic transition to
terized by high axial velocities (denoted by group I) the constant-B. region. over ten wiggler periods.
for low B0 and decreases monotonically with the ax- The results of the integration of the orbits with
ial field up to a critical Bo (fo/ykwc -0.76 for the BW(z) characterized by (20) are shown in Figs. 2 and

3, where we plot the components of the velocity
versus kz for y=3.5 and fl,/rykuc =0.05. Note

,, S that the initial conditions on the velocity were
sruw GaouC chosen to be vu=v2 =0 and v 3 =(I--y- 2)1/2c. Fig-

ure 2 corresponds to parameters consistent with
"/"group-I steady-state orbits, and we find that the tra-

jectories in the constant-B. region differ only slight-
-/ ly from the steady-state case. As is evident in the

, figures, the bulk values for the magnitude of v, in-/ ".. "%. -crease with the adiabatic rise in Bw, after which

small oscillations about mean values corresponding

FIG. 1. Graph of the axial velocities corresponding to
the steady-state :rajectories as a function of the axial FIG. 3. Plot of the single-particle trajectoies vs axial

guide field, position for flo/yk~c =1.0, 11. /yk~c =0.05. and y= 3. 5.
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to the group-I trajectories are found in the constant- make it difficult for the beam to propagate. In ad-
B region. Note that ykV 3 > fl0 for these orbits dition, the fluctuations in the axial velocity can
and, hence, v <0. In addition, v2 =0 for the cause a breakdown in the FEL wave particle reso-
steady-state orbits, and the electron trajectories in nance condition which, even if beam propagation is
the constant-B. region exhibit small oscillations possible, will result in a substantial decrease in the
about this value. The behavior of V3, while not gain.
shown explicitly, also exhibits small oscillations (of

* less than 1% of the mean value) about the appropri- IV. NUMERICAL SOLUTION
ate value for the group-I orbit. Thus we conclude
that it is possible to adiabatically inject electrons The set of coupled differential equations derived
into the interaction region on near-steady-state or- in Sec. II is solved numerically for an amplifier con-

bits. However, it should be observed that as figuration in which a wave (W,k +) of arbitrary am-

flo/ykc increases from 0 to 0.76 (corresponding to plitude is injected into the system in concert with a

an increase in B0), the magnitude of the fluctuation monoenergetic electron beam. The initial conditions

relative to the steady-state bulk value increases. (at z =0) imposed on the electron beam are chosen

This trend is characteristic of group-l-type injection such that the particles are uniformly distributed in

and is indicative of the fact that it becomes increas- phase for - r < 0:5 7 r in order to model the case of

ingly difficult to obtain near-steady-state trajectories a continuous beam (i.e., the beam is not pre-
as the transition to orbital instability is approached bunched). Difficulties which arise from the in-at which point (fo /rkwc-..76) the orbits differ clusion of a necessarily finite number of electrons in

widely from the steady-state trajectories and exhibit the phase averages (12) were found to be overcome
large fluctuations in the velocity. As a result, it be- by the use of a Simpson's rule integrator for 61 par-
comes impossible to either inject or propagate a ticles per wave period. The use of larger numbers of
coherent beam through the system. electrons was found to result in discrepancies of

Injection corresponding to near-steady-state orbits considerably less than 1%. As in the integration of

of the group-Il type is illustrated in Fig. 3 for single-particle orbits in Sec. III, the wiggler field is
flo/yk,c = 1.0. Observe that yk.v 3 < n1o for these assumed to increase adiabatically to a constant level

* -orbits and v I > 0 in this regime. Although orbital over ten wiggler periods (20). The electromagnetic
instability does not occur for group-II trajectories in mode was chosen to correspond to the wave charac-
one dimension, the orbits are characterized by low terized by the highest linear growth rate. Thus if
axial velocities for sufficiently small B0 . As a the equilibrium orbits are characterized by the
consequence, it is possible for axially injected elec- steady-state trajectories described in Sec. III in the
trons with relativistic energies to be characterized by constant-B. region, then the frequency and wave
initial axial velocities much greater than that of the vector are determined by the intersection of the elec-
steady-state orbit. This is the case which corre- trostatic beam mode
sponds to the orbit shown in Fig. 3, which is charac-
teristic of the resulting trajectories for flo/yk c < 1. w=(k -,€)VI1  (21)

The orbits in this regime may still be described as a
perturbation about the steady-state orbits, but the and the transverse electromagnetic mode
perturbations are large. It is only when B0 has in-
creased along with the steady-state axial velocity 2
that the perturbations about the helical orbits again o2-k2+c 2 - =vii) =0, (22)
become small (i.e., flolykwc > 1.3). As in the case ?"(o--fl°/y-k+vil)
of injection into near-group-I type of orbits in the
vicinity of the orbital stability transition, large fluc- where
tuations in the equilibrium electron velocity results
in a degradation of the FEL interaction. k =k+ +k. , c--coblt/y'2 yl v!I

In view of the preceding results regarding the adi-
abatic injection of relativistic electron beams into a _ _ _ _ _"'0>-- I - (23)
combined axial guide field and helical wiggler field, - d+)f1o-yk,.v ,
we conclude that large-scale fluctuations in the elec-
tron velocity may be expected whenever and 3

w -- v w/v. . Finally, the initial level of fluctua-
0.76 <flo/ykwc 1.0 for y=3.5 and fl/ykwc tions in the space-charge field is assumed to be zero.

f= =0.5. Within this range, the transverse components Insofar as the electron orbits approximate the
of the electron velocity may become sufficiently steady-state trajectories, it can be expected that the
large that the radial excursions of the electron beam radiation field will experience a period of exponen-
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tial growth (at a rate consistent with the linear of interest. The linear dispersion equation can be re-
theory) prior to saturation. As a consequence, a duced to the following quartic equation in k > (>0)

.' brief discussion of the linear dispersion equation is (Ref. 9):

[(o-kv11 )
2-'v 1 J(k -k.-K, )(k -k,-K_)

where wb/y'2ktc is the beam strength parame- Therefore the Raman regime is found when
ter, K 2 -( w2-_ 2 , l ,)IC 2,

K (32)>> f.gk .(2

K - "K I floIt should be observed that the criterion defining
2 V11 the Raman and Compton scattering regimes is

2 11/2 dependent upon B0 as well as on the beam and
±.L ( K)2+2k. , (25) pump strengths. As a result, it is possible to make a

2 [Kv transition from one to the other regime as a function

-and 6K--K -(o-floly)/v11 . If the beam strength solely of axial guide field. Since the principal objec-

parameter is sufficiently small that << y: tive of this paper is to examine the efficiency

x (B./Bo)2/ 3 and r(BW1Bo)
213

(b2, then (24) enhancement of an FEL amplifier.in the presence of

reduces still further to a more familiar cubic disper- an axial guide field, the results of the simulation will

sion equation 9  be compared with the more complete form of the
dispersion given by Eq. (24), and not by the idealized

8k(6k +2x)(5k -4k)--L 2 k 2 ': ' ,- Raman and Compton regime approximations. It
4 'V will be shown at a later stage of the discussion that

the agreement between the linear theory as
(26) represented by Eq. (24) and the numerical simula-

where 8kmk-- IVkI-/c, 011 uvll/c, and 1k--k, tionisexcellent.

+K '".IVII -K is the frequency mismatch parame- An example of the simulation results is shown in

ter. Fig. 4 in which the radiation-field amplitude 8a (z)

The "strong-pump" (or Compton scattering) re- and the growth rate r(z) (-d ln6a /dz) are plotted

gime is obtained when I 8k I >> I 2 I. In this limit, as functions of axial position for flo/yk.,c =0.0

(26) can be approximated as
(8k)2(8k -Ak)=- 4 g(a)27 " P .......

II , ... II

and peak growth occurs when Ak -0 at which point

(8 2,-(+v) .L2 41I/kw. (28)
n- * a a In M3As a consequence, the requirement for Compton

scattering to be valid becomes

. << t w'y.2,611k. (29) W""- (bI

The opposite (Raman scattering) regime occurs -
when I 2x >> I I6k , and (26) can be represented in I
the form a-

(6k)'-Ak 8k + -ll, . (30) , a s

Peak growth is again found for -k =0, where FIG. 4. Graphs of (a) the radiation-field strength and
(b) growth rate, vs axial position for flo/ykwc =0.0,

(6k)ma.i[ wFtkw(3iK/kw ' )I/2 . (31) fl./k.c =0.05, y= 3.5, and =0. I.
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(i.e., no axial guide field), fl./ykc =0.05, y=3.5, ' ,..
and 8a(z =0)= l0- 7. As such, the illustrated calcu- ,,-, .
lation corresponds to the orbit calculation shown in ,-'f " "
Fig. 2. It is evident from the figure that, after an in- 8.,* " "
itial transient phase U /.< 29.1), an extended re-
gion of linear (or exponential) growth occurs as evi- -

denced by the constancy of the growth rate. During ,,_,

imp this phase of the interaction, the growth rate as ,
computed by the simulation is r/k.=.0.0146,
which is in good agreement with the linear theory
(24) which predicts a growth rate of (b

r 11i/k.=0.0145. Note that this corresponds to
peak growth at a frequency co/ck.--21.6.

Fluctuations in the growth rate found in the to __

simulation are Ar/k_±0.0002, which is to be ex-
pected on the basis of the orbit calculation (Fig. 2)
due to the relatively small fluctuation about the
steady-state trajectory. Saturation begins to occur at Aw

z/X ,.114. 1, after which the growth rate rapidly FIG. 5. Graphs of (a) the radiation-field strength and

decreases to zero at z/A=t127.3. At saturation, the (b) growth rate, vs axial position for flo/ykc =0.7,

radiation-field amplitude is (8a).--2.56X 10- 3  fl,./yk~c =0.05, y=3.5, and =0. .

which corresponds to an efficiency of 3.65%. Sa-
turation occurs by means of particle trapping, and tuations in the growth rate is apparent. It should be
this will be discussed in detail later in this section. noted, though, that for 20 5 z A. < 30 the growth

As shown in Sec. II, increases in the axial guide rate is relatively constant and has an average value
field initially result in increasing fluctuations in the of r/k _0.063, which is comparable to the result
electron orbits about the steady-state trajectories. In of the linear theory of Il1i./k.-0. 060. The increase
addition, it has been shown that the linear growth in the growth rate results in a itill further decline in
rate also increases with B0 for the group-I class of the distance to saturation which now occurs at
orbits.4 ' 9 Therefore in order to determine the non- z.,/X=-32.6; however, while (8a),,---4.09x l0- 3

linear effects the axial guide field and the adiabatic represents a continuing increase in the radiation
increase in the wiggler field, a series of calculations field, the efficiency at saturation has decreased to
has been performed over a wide range'of B 0. The 4.02%. The decline in the efficiency is attributable

' results of the simulation for flo/yk~c =0.5 show to the decrease in the wave frequency.
the average growth rate during the linear phase of
the interaction to be r/, k-' . 0.030 with a fluctua-
tion of r/kt o.003, which remains in good
agreement with the linear-theory result (24) of
r3i,/k.-0.029. The increased growth rate leads to 8. "
a decrease in the distance to saturation, which now
occurs at z. 1 /t A _67.5 at a field level of
(8a),,_-3.30x 10- . The wave frequency for this
case (at peak growth) was w/ck-. =19.4, and the ef- .
ficiency at saturation has increased to 4.92%. The
decrease in frequency for this case resulted from a
decrease in the axial velocity of the beam (see Fig. Ole

Increases in the axial guide field above this level
(but still corresponding to group-I orbits) lead to r

larger fluctuations in both the orbits and the growth
rate in the linear regime which culminates in a
chaotic interaction at the transition to orbital insta- -,_ _ __J

bility at flo/ykc=O.76. A transitional case is illus- ,
trated in Fig. 5 for which flo/yk~c =0.7 and a fre- FIG. 6. Graphs of (a) the radiation-field strength and
quency corresponding to peak growth 9f (b) growth rate, vs axial position for flo/yk.c = I.I,
o/kc-14.2, in which the magnitude of the fluc- fl.,/yk~c =0.05, y= 3.5, and =0. I.
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For levels of B0 such that flo/ykwc >0.76 the
electron trajectories correspond to perturbations (a)
about group-1-type orbits. However, as seen in Fig. I N

3, large divergences from the steady-state orbits
occur for flo/ 7 kc =1.0 and are characteristic of -'w
the low-bulk axial velocities in this regime. The im-
plication of such orbit behavior is that since (1) the
growth rate must also exhibit large-scale oscillations
and (2) the resonant frequency is relatively low, the
interaction efficiency can be expected to be small. , ......
Such an expectation is borne out by the simulation
results as shown in Fig. 6 for flo/yk.c=ll. and a M" Q_ I

frequency at peak growth of (o./ck =---11.4. The sys- &S
tern evidently shows the expected large-scale fluc- d

tuations in the growth rate (Ar/k,±0.036) about
a mean value of rI/k 3 =0.072 after the transients
have decayed (z /X, >20). Note that the linear kn
theory predicts a growth rate of rI,/k.=0.056 on
the basis of the steady-state orbits, which is well "
within this range. Saturation occurs at
Z,,/ ,=41.1 for (8a).,=4.91X 10-3; however,
while the field amplitude is relatively high, the low
frequency of the mode results in an efficiency of
3.88% which is comparable to the zero-axial-field
limit. It should be remarked here that the case in '

which %1o/-rkc =•1.0 (corresponding to- Fig. 3) is Q4Iy"

not shown here since it represents a still more ex- FIG. 7. Plots of (a) the peak growth rate and.(b) the
treme example of the results of the large oscillations corresponding resonant frequency, vs axial field strength.
in the single-particle orbits and has a still lower effi- Circles indicate the growth rates obtained from the nu-
ciency. merical simulation.

Further increases in the axial guide field corre-
spond with increases in the resonant frequency and
decreases in the departure from the steady-state gime. As seen in the figure, the agreement between
single-particle trajectories. As a consequence, the the simulation and the linear theory is excellent.
evolution of the radiation fields becomes more regu- For the cases shown, it is only when flo/ykwc = 1.1
lar as well. For flo/ykwc = 1.5 and a frequency at that the growth rates differ by more than about 2%,
peak growth of ow/ck.= 20.3, the simulation gives and this is due to the relatively large divergence of
r/k,=0.021 with a variation in the growth rate of the single-particle orbits from the steady state.
less than 1%. It should be noted here that we also However, this problem no longer appears for
recover a growth rate of r 1i./k :%0.021 from fno/k.c =•1.2, and we conclude that (for the
the linear theory (24). Saturation occurs at parameters under study) difficulties resulting from
z"/X -- 93.1 for a field level of (80.t nonsteady-state single-particle orbits are important
=3.19X 10- 3 and an efficiency of 5.02%. only for 0.76 < fo/rk.c < 1. 1, where both the fre-

A summary of the frequencies and growth rates quency and efficiency are low. Consequently, this
for the various simulations is given in Fig. 7 in regime will be ignored in the discussion of the
which we plot w/ck, and r/k. vs fl.o/ykc. The overall radiation efficiency and saturation mecha-
curves for the frequency represent the variation in nism.
the resonant frequency at peak growth found from The energy-conversion efficiency and the distance
the intersection of the dispersion relations in Eqs. to saturation are shown in Fig. 8 as functions of the
(21) and (22) for the appropriate value of ull from axial magnetic field. The efficiency is defined to be
the steady-state trajectory. These values represent the ratio of the total energy lost by the electrons
the frequencies used in the simulations. The solid through the interaction to the initial energy and may
line in the plot of r'/k. represents the results of the be shown by computation of the Poynting flux to be
linear theory (24), again, for the appropriate steady- 2
state trajectory while circles are used to denote the 7 .(33)
results found from the simulation in the linear re- r y~y_ 1).611 ck.
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FIG. 10. Graph of the phase-space distribution for
flo/ykc = 0. 5 and z/X. = 67.5 at saturation.

' . when no guide field is present. Note also that sa-
* -turation occurs over a much shorter interaction

length. However, the greatest enhancements in the
efficiency are found for the group-II class of trajec-
tories, for which a peak efficiency of approximately
8.09% is found for flo/rkctl.2 and corresponds
to an efficiency enhancement of 122% relative to

FIG. 8. Graphs of (a) the distance to saturation and (b) the .Bo--O linit. It is important to bear in mind,
saturation efficiency, vs axial field strength' however, that these enhancements in the efficiency

occur at the expense of decreases in the resonant fre-

It is evident from the figure that substantial quency of the interaction (see Fig. 7). Finally, the
low efficiency found for flo/rk~c1.25 corre-

enhancements of the efficiency are possible over that sponds to parameters for which I « J << 1. In this
found in the absence of an axial guide field. For regime (which is discussed in detail in Refs. 3 and 9)
parameters corresponding to the- group-I orbits, the the ponderomotive potential and, hence, the linear
peak efficiency is approximately 5% and occurs at growth rate vanish (Fig. 7).
fl/i/_kc =0. 5 for the chosen parameters and consti- As mentioned previously, saturation occurs by
tutes a 37% enhancement over the efficiency found means of particle trapping in the ponderomotive po-

tential which results from the beating of the wiggler
-" • .and radiation fields. An example of this is shown in

G "Figs. 9 and 10 in which the positions of the particles
L ................... (represented by the dots) in phase space (tb,dtb/dz)

are plotted for flo/yk~ct_0.5 (i.e., group-I type of
orbits) and z/A. = 47.7 and 67.5, respectively. The
solid lines in the figures represent the separatrix

too ,.which encloses trapped (i.e., bounded) phase-space

trajectories. It should be noted, however, that while
the positions of the particles represent the results of
the simulation, the separatrix represents an approxi-

441 mation as it is derived from a perturbation about the
exact steady-state orbits described in Sec. II. As
such the separatrix is strictly valid only insofar as

the particle velocities are close to those for the heli-
cal trajectories, for which'2

FIG. 9. Plot of the phase-space distribution for d2  c(k +k. )4 asin. (34)
fl4o/yk.c =0.5 and z/X.-=47.7 in the linear regime. dz2  Y)rW 2  c
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The separatrix, therefore, is given by

d c(k+k,) 2  v a s LU

-06a sin z
(35)

when v.( > 0, and

d c(k+k,),t , f*±2 10j 8a,.. .

dZ YZY'~ C Cos-a ,A. 3 U

(36) .,

when u.b <0. Because of this, the phase-space evo- .. .

lution of the particle distribution is dependent upon
the signs of both v, and 0. For thegroup-I class of FIG. 12. Graph of the phase-space distribution for
orbits (which includes the zero-guide-field limit) flo/ykc = 1.1 and z/A =39.8 at saturation.
v. < 0 and 0 > 0 and the separatrix is determined by
Eq. (36). However, the situation is more complicat-
ed for the group-II class of trajectories. In this case, remain unbounded. In contrast, Fig. 10 represents
while v. > 0 for all the trajectories, D is less than the phase-space distribution at saturation, and it is

zero for flo/rk.c S 1.25 (for the parameters clear that while two particles remain on unbounded

chosen), and greater than zero for axial field orbits outside the separatrix, the bulk of the elec-

K:-. strengths above this critical value. Thus one must trons has been trapped. The results shown here are

. distinguish between -these two regimes in the in agreement with those found by Sprangle et al."

Sanalysis of the pase-space structure of the interac- It was pointed out previously that the phase-space
tion. Since the single-particle trajectories are seen to behavior of the electron beam is somewhat different
be close to the steady, state orbits, it is expected that' when 0<0. This discrepancy arises from the fact
the separatrix shown in the figures [given by Eq. that the electron velocity is greater than the phase
(36)] is a reasonable approximation, velocity of the ponderomotive wave [equal to

The initial phase-space electron distribution (at wa/(k++k.)] at peak growth (dk/dz>0) when

z=0) is uniform in that d*/dz=k+k,-o/v,o 0D> 0, but less than the phase velocity of the pon-
over - 0 r for all the particles. Figure 9 deromotive wave when t <0. This can be illustrat-
represents the phase-space distribution at a relatively ed by consideration of the small-signal gain in the
late point in the linear phase of the interaction. It is single-particle regime, 3" 2

evident, therefore, that the phase-space bunching of s
the particles has begun but that the trapping of tht GL =-L3kk i3
electrons has not yet. occurred as the trajectories I6$I dO j7

where O= - L ddk/dz. Therefore when 0>0 peak
*69- gain occurs for Otte-1. 3 and d#/dz >0. However,

in the opposite case when 0V <0, the peak gain
occurs at 0=1.3 and d'/dz<O. This type of
phase-space behavior is, indeed, found in the simula-
tion and is evident in Figs. 11 and 12 in which we

.- { -0 ... plot the phase-space distributions for flo/ykwc = 1.1
.- and z/ --31.8 (in the linear regime) and

.. z/. = 39.8 (at saturation). The separatrix in these
,., figures was calculated from Eq. (36). Note that

while the bulk of the particles is trapped on bounded

phase-space trajectories at saturation (and that ex-
..................... treme phase bunching has occurred), a greater pro-

............ . portion of the particles appears to be outside the
separatrix on unbounded orbits than in the other

5' cases shown. However, this observation must be~" L', lIG. 11. Plot of the phase-space distribution for made in view of the fact that the single-particle or-
flo/yk. = 1.1 and z/,. 31.8 in the linear regime. bits resemble those shown in Fig. 3, and the orbits
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are widely divergent from the steady-state case. work it was concluded that, for the configuration
Thus the separatrix is difficult to determine precise- used, the electron orbits deviate only slightly from
ly, and may differ greatly from that shown. the helical trajectories except when flo - yk c, where

the orbits are seen to execute large-scale oscillations

V. SUMMARY AND DISCUSSION about the steady-state trajectories. As a result, the
linear theories are expected to be relevant over aThe principal objective of the study described in wide range of parameters.

this paper is to examine the effect of an axial guide In fact, the numerical integration of the coupled

field on the nonlinear stage of the FEL interaction, particle-field equations bears out this conjecture.

Previous studies of the linear regime - 9 have re- The results shown in Figs. 4-6 show that (except

vealed that large enhancements in the growth rate hen on init4al tat phaspa
areposibl, ad te pimay fcusof hiswor is when f'lo--ykc), after an initial transient phase, an

are possible, and the primary focus of this work is extended region of linear (i.e., exponential) growth
directed toward the question of whether enhance- ocuswtgrthaes hihrenexlet

* ments in the nonlinear efficiency are possible as agre with th linea t h r e ig 7).eEen
agreement with the linear theory (see Fig. 7). Even

well. To this end, a self-consistent set of field and in cases where substantial deviations from the
particle orbit equations is derived for a FEL ampli- steady-state trajectories occur, the growth rate is
fier which describes the evolution of both the wave seen to oscillate about the predicted linear result
amplitudes and trajectories for an ensemble of parti- (Fig. 6). Saturation is found to occur by means of
cles. It is important to observe that although no particle trapping in the ponderomotive potential,
particle distribution function is explicitly included and substantial enhancements of more than 100%
in the analysis, the source currents used in are observed over the efficiency in the absence of an
Maxwell's equations constitute time averages over axial guide field. The greatest enhancements occur
the microscopic electron currents, and the level of for parameters consistent with the group-Il type of
the formulation is kinetic. The equations are then orbit and relatively large axial guide fields
integrated numerically as functions of axial position (f-1- 1.2ykc) which is consistent with the results
subject to initial conditions which describe the in- found in the experiment at the Naval Research Lab-

* teraction of a uniform electron beam with the guide oratory using the VEBA accelerator.' 3 It should be
and wiggler system. In fact, entry of the beam into noted, however, that such enhancements in the effi-
the interaction region is effected by means of an adi- ciency correspond to decreases in the axial velocity
abatically increasing wiggler- amplitude which of the electrons (and to increases in the transverse
reaches a constant level after ten wiggler periods. velocity) due to the presence of the axial guide field
Finally, inclusion of fluctuating space-charge fields .and, therefore, also correspond to decreases in the
in the formulation permits analysis of both the resonant frequency of the interaction.
single-particle (Compton) and collective (Raman) re- Finally, it should also be remarked that these re-
gimes of operation. suits have been obtained for a monoenergetic elec-

Thu effect of the initial adiabatic increase of the tron beam. Introduction of a finite energy spread
wiggler field on the single-particle orbits was con- can have important consequences on the growth
sidered by numerical integration of the orbit equa- rates and saturation levels. In fact, recent results 14

tions in the absence of electromagnetic and electro- using a full-scale particle simulation indicate that
static fields. The purpose of this phase of the decreases in the efficiency are to be expected when a
analysis is the determination of the types of orbit finite energy spread occurs.
which result; in particular, whether the electron or-
bits resemble the steady-state (helical) trajectories
upon which the linear theories of the interaction are This work was supported under NAVSEA Con-
based. As such, the question of the relevance of the tract No. SF68-342-602. The author would like to
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Unstable electrostatic beam modes in free-electron-laser systems

H. P. Freund* and P. Spranigle
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The electrostatic stability of the free-electron laser is studied for a configuration in which a relativistic
electron beam propagaltes through combined helical wiggler and axial guide fields. Instability is found for
certain specific parameter regimes which, in the beam frame, is shown to be purely growing and to require
the presence of both the wiggler and axial guide fields. The electrostatic stability is also studied for a con-
fuguration which consists of a linearly polarized wiggler and an axial guide field, for which analogous
results are found.

The stability properties of a free-electron-laser (FEL) con- form 8E -8Eexp(ikz - iwt), Eqs. (2) and (3) can be re-
* figuration in which a relativistic electron beam propagates duced to the form

through a combined helical wiggler and axial guide field was
investigated by many authors.' - ' It was pointed out by -i(w-kv,1)8 1 +( fo - k,)867 6t (4)
Freund eral.9 that, in addition to the coherent radiation yom C

process, the electrostatic beam modes are intrinsically un- (fo-k,)8;t +q(-ki,)8 2 +t 0O3..8;
stable for a specific class of operating parameters. It is our
purpose here to expand upon the discussion in Ref. I and to te ,U1 kv,1 , .-
discuss the underlying physical mechanism behind such an Yom C- ca - k v,
instability. To this end. we choose to analyze an idealized -

model which consists of a cold relativistic fluid described by fl,.5u + i (w - k 6E ) - -- . 6)

Sn + .n ;)-0()
-f--t ' to first order in the electric field, where 13,.,inu/Iu and

_/ (1 - i/c') -1/2. The stability properties, therefore, are
d "-e j(T--_ 7_) 6g + 'V'×[I (2) determined by Eqs. (4)-(6) in conjunction with the follow-

- dr ym' 2 c 'in combination of the continuity equations and Poisson's
equation,

d.(3)

where n and " describe the electron density and velocity.

respectively, -y = (l -uc-/ 2) where w,,"(4ire'no1M)1/2 is the beam plasma frequency.
It is clear from the : component of the momentum

t B-Boi, + B,(icosk.: sink..:) transfer Eq. (6) that in the absence of a wiggler field there

is the static magnetic field, 8E is the electrostatic field is no coupling between the axial and transverse components

(which is assumed to constitute a small perturbation), and of the velocity, and the dispersion relation reduces to the

d/dt - a/at +;. 7 is a convective derivative. The equili- well-known positive and negative energy beam modes

brium state to zeroth order in 8E is assumed to be homo- w-k v,, :t:./ ,Y 2 ,. However. the parallel-transverse cou-

geneous (i.e., 7 no-0), and is characterized by a veloci- plgn in the presence of the static fields can alter the dielec-

tyl ° , 7 0 -u,,i +v,1 3, where i, is a constant, v.- ,,u,/ tric properties of the medium. Elimination of 8u from Eqs.
(flo - k.vn ), flo.." eBo ../'ymcn , and (4) and (5) shows that

kw - kvl)2 -( flo - k.u,, Z] G
ie 1=ecosk,.z +i,sink,,z ,
i'2- -i,sinxz +i~cosk,,z I 'Yom, C(-,,8, I I

and and 8Z2 is nonzero only if both the axial guide and wiggler

i3-i, fields are present. Thus, the modification to the dispersion
properties of the electrostatic beam modes which is of in-

define an orthogonal coordinate frame rotating with the terest here is possible only through the combination of both
wiggler field. Observe that conservation of energy imposes magnetic fields. The instability can be readily demonstrated
the requirement that u. +,i - (I - -1,02)cl. by combination of Eqs. (6)-(8) to obtain the following

Under the assumption of .plane-wave solutions of the dispersion equation:

(wk,,)= i 1 1fo. no(1o- k.u,,)
8 1o'835 ' I [1 042) o-kun, (o-k.uall - (9)es
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The regime considered in Ref. 1. and which is most relevant (i.e., 0 < 0) and the net effect of the electric field is :o
to current FEL experiments, is that in which Iw-kvuI drive axial velocity fluctuations counter to that produced by

I fno- k.uiI. As a result, the dispersion equation is of the "'direct" action of the electric field. The combined ac-
the form tion of the axial guide and wiggler fields results in a phase

shift in the axial motion which causes electron bunching to
(,-kv,,) - ,b (10) occur in such a way that the electric field is enhanced.

VOV Thus, although this is a nonrelativistic effect, the system
where acts as though. the electrons had a negative mass.

,j 1Bw~flo It is also of interest to determine whether an analogous
-0- (Q 1) instability exists for a configuration in which the static mag-

.(I +/z) no - k.ui netic fields consist of a linearly polarized wiggler in com-

It is evident that instability results when 0 < 0. Further- bination with an axial guide rield. In this case we represent
more. the instability is purely growing (i.e.. the real part of the magnetic field in the form 8- , . sik,.z The
the frequency is zero) in the beam frame. Additional infor- equilibrium orbits in this field geometry are
mation on the parameters necessary for instability is given v-.avi cosk,,z
in Ref. I. Finally. solution of the complete dispersion equa-
tion (Eq. (9)1 does not qualitatively affect this conclusion. u,.-xno(kwu) -vi, sink.:

In order to understand the underlying physics we consider
motion in the absence of an axial guide field. It is clear and
from (6) that the modification of the dielectric properties 1
results from the presence of a 8u 2i 2 x , force in the
momentum-transfer equation. Hence, the essential point is where a nku, 1/(nj-k.2vi,) and oscillatory terms in
to determine a source for an oscillatory velocity in the direc- 2k,z (and higher) have been neglected. Conservation of
tion of i2. The possible sources for such a motion are evi- energy, therefore, imposes the constraint (1 -I )
dent from the two-component of the momentum-transfer -(1 -')c 2, where P'=. u'a(l + nj/k2vi). Perturba-
equation (Eq. (2)) and includes a 7 x f force tion analysis of Eqs. ()-(3) about this equilibrium state to

(•- first order in &E, and combination of the result with Eq.
S - ( , "'e2 - fw8v3 , (12) (7), therefore, yields the following dispersion equation:

convection (note that Vii-k.i2) due to the centripetal (w-kv,)'
force arising from the rotation (or gradient) of the wiggler -ti(, O +3k.V1,)
field., 1 0- ~ -0 ;

F., - -(87. 1V'0) it- - kv, v . (13)

as well as a relativistic contribution which arises from the in the limit in which 1W-kuj << i o-k.uq. This is
variation in the total energy. When no axial field is present, analogous to the dispersion equation for the helical wiggler
.- - fl./k. and the convection exactly balances the T x" Ifildg(0) an tal isp oun w he

force with the result that no net velocity in the i2 direction
occurs. The relativistic contribution is the sole remaining 1)- ( (IJ - 1) fl( n + 3 kuvi ) < k.01 < M' I 16)
source, but it can be shown to drive oscillatory motion only
in the il direction. However, the axial guide field tends to As in the case of the helical wiggler, the instability is purely
increase the transverse velocity (i.e., v.), and results in growing in the beam frame, and arises from the same 7nysi-

enhanced convection as well as a net source which drives an cal mechanism.
oscillation in the i 2 direction. As mentioned previously, the The central question raised by this analysis is how the is-
fusfr h d otability will affect the performance of the FEL. On the basis-"..-.finite U2 causes a 87 x ,. force in the axial direction which

..... of a linearized theory it his been shown that the growth
affects partial bunching and modifies the dispersive proper-
ties of the medium. As long as k.vu > no the convection rates for the amplification of radiation are large (and exceed
acts to oppose the 7x4 force (12), in part, and causes an those found in the limit as 8o-0), and the bandwidth is

L,,. effective enhancement in the plasma frequency (10). In enhanced for the range of parameters leading to the electro-

contrast, when k.t, < no the direction of the i1 com- static beam instability. However, since it might be expected

ponent of the zeroth-order transverse velocity is reversed that the electrostatic instability will lead to degradation of
(i.e.. v, > 0), and onvection tends to enhane the effect of beam quality in the nonlinear regime, the effects of this in-
the 7 x force. It is in this regime that instabliity is found. stability on the saturation of the FEL are of prime impor-

tance. This question has been addressed by means of a par-The actual motion in the case in which instability occurs tidle simulation of a cold beam in an FEL amplifier. 12 and itmay be summarized as follows. The electric field drives a was roun at f o e am n s id er .th and a-
fluctuation in the axial velocity which, in turn, causes a net was found that (for the parameters considered), the satura-
velocity fluctuation in the il direction by the combined ac- tion efficiency is greatest when the electrostatic iistabdlity is

tion of the Lorentz force and convention. This velocity present. It should be remarked that this conclusion is rein-
then feeds back upon the axial velocity via the Lorentz forced by experimental resultsii .

' in which maximum
.force (3uJ 2 x . The feedback provides the dominant power was observed for parameters corresponding to theor contribution to the axial velocity when electrostatic instability. Thus, while the question of the ef-

rects of the electrostatic beam instability on the FEL has not
(I -v], u/c ) nlo < k.u,, < nl0 , (14) been conclusively answered (i.e., a more complete parame-
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Three-Dimensional Theory of Free Electron
Lasers with an Axial Guide Field

HENRY P. FREUND, SHAYNE JOHNSTON, AND PHILLIP SPRANGLE

Abstract-The collective interction in a free electron lae r with a wiggler are generally unimportant in the absence of an axial
combined helical wiggler and unfoam axial guide field is presented in field as long as krb << 1, this is not the case when a guide
the low-gain regime. The wigge model we employ is fully self-consi. field is present. In this case radial inhomogeneities introduce
tent and includes all transverse inhonoelediriee .The analysis is c ln t
formed for a free electron laser (FEL) amplirm in which the radial fundamental differences, and the problem must be treated in
dependence of the radiation is treated using both the Ti and TM wave- full generality. To this end we employ a realizable wiggler
guide modes. Substantial discrepncies ate found to exist between the field which is generated by a bifilar helix [71, [8] and write
results for the realizable and ideal wigglers, and a selection nole relating the static magnetic field as

* the TEtn and TM1n modes with resonant amplification at the lth haer-
monk of the FEL Doppler upshift. , ^

B = Bo + 2B (X) cos Xe, - X (X) sin x4e

A GREAT deal of activity has been directed toward the
analysis of free electron laser (FEL) configurations which + 11 (X) sin X ') (I)

consist of an axial guide field as well as a transverse, axially
periodic wiggler field [1]-[5]. The principal (but by no in cylindrical coordinates, where Bo and B, are the amplitudes
means only) application of such analyses is to millimeter wave of the axial and wiggler magnetic fields, X - kwr, kw - 2-/ X,
FEL experiments which make use of relatively high current (where Xw denotes the wiggler period), X S-0 - kwz, and I
(1 kA) and low-energy (1 MeV) electron beams, in which the and 1't are the modified Bessel function of the first kind and
guide field is required in order to confine the beam [61. How- its derivative, respectively. Since our intention is to treat radial
ever, it is of particular significance that one effect of the guide inhomogeneities in a self-consistent manner, these effects must

* field is to strengthen the FEL interaction, and large enhance- also be included on the coherently amplified radiation fields.
ments in the gain are found to result when the Larmor period As a result, the radiation fields are modeled by the well-known
associated with the axial field is close to the wiggler period. TE and TM modes in a cylindrical waveguide of radius R. The

The fundamental difficulty with each of these analyses, how- vector potentials for these modes are of the form
ever, has been the assumption that radial inhomogeneities in
the wiggler field can be neglected when kwrb << I (where k, SA1(x, t) = 6Ain I- J,(pn). sif a(z, 0,t)

* is the wiggler wavenumber, and rb is the beam radius). In such LPin
a case, the radial variations in the wiggler are of the order of
(krb)2 , and were ignored. As pointed out by Diament [7], + Jl,(p1 n) e cos n,(:, , t) (2)
however, when radial inhomogeneities are included in a self- I
consistent analysis of the equilibrium orbits, the transverse for the TE mode, and
velocity associated with the wiggler field (Which we denoted

16 by vw) scales as Iuvwlu, I k..r. Since uw/u, measures the SA,(x.t)i 61Ain IJj(pln)e"cosa (z,9,t)
strength of the oscillatory current which mediates the FEL n.1
interaction and the gain is found to scale approximately as
(u,,Iu,)2, the assumption of such an ideal radially homoge- e( - -.. 11tn .)J,(P. si a(9)] 8.
neous wiggler constitutes a basic inconsistency. n kRJ

It is our purpose in this work to develop a self-consistent
theory of the FEL interaction in the low-gain regime in which for the TM mode. In (2) and (3) J, and . are the regula, Be',e
the effects of radial inhomogeneities are included. Our results function of the first kind and it's derivative, k is the
indicate that while the radial variations in a self-consistent ber ot the modes, , -xinr/R. p -, -x 1 r1R. xi, an-'.t

the nth zeros of the J, and J;, respectively, and .. : -

the phase of the wave. Observe that the un .. .
Manuscript received July 29, 1982; revised September 24, 1982. This the p ete ave srve the m

work was supported in part by NAVSEA under Contract SF68-342-602. the complete radial mode structure Coheren
H. P. Freund is with Science Applications, Inc., McLean, VA 22102. included by allowing both 6.4in and k !o -r
S S. Johnston is with the Plasma Physics Laboratory. Columbia Univer- Z (such that a. In SAtn << k 3nd A. n ksity. New York, NY 10027.
P. Sprangle is with the Plasma Theory Branch, Naval Research Labo- at(z, 0, t) = fol:'k+l8-wt If- Ir2 ,

ratory, Washington, DC 20375. result, it is important to note t,.
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Fig. 1. Graph of the axial velocity versus axial guide for both the ideal
and unraiale wiglJez, .

* modes will predominantly couple to resonant amplification at Equation (5) reduces to the result for an idal wigl~er in the

frequencies w = (k + lkw)u, (i.e., to the lith harmonic of the limit as ). -- 0; however, since consistency requires that RI =
FEL Doppler upshift). It should also be remarked that this lue,/o I this limit is not strictly valid. Final specification of
choice of the radiation field allows for the self-consistent the orbit requires knowledge of either u,,, u5, or X(a value for

inclusion of the filling factor in the calculation of the gain. any one of which is sufficient to calculate the remaining two).
",In addition to these field structures, the physical configura- We choose to determine X., and write

~tion is assumed to consist of an electron beam in which the

individual electrons are initially characterized byhelical orbits X2 [(I - 7- 2) (I + X2)-11 't2 = PoX2 ± 20w (1 + X2) 1  (X)

with constant radius and constant axial velocity. Since the (6)
stability analysis for the gain involves a calculation of the per-
turbations of these orbits due to the radiation fields, it will on the basis oftheenergyconstraint, where P0, N ,,,/7kc.
prove useful to review the properties of this class of orbit [71. Evidently, (6) determines two distinct branches which may
The basic equations governing the single-particle trajectories in be obtained numerically. The solution for up Ic corresponding
the static magnetic fields given by (1) are to the two classes of orbit implied by (6) are plotted versus

Po (for P, = 0.05 and 7 - 3.5) in Fig. 1. Also, shown in the
7V1 = "(9o - yk.v + 2M.f11 (X) sin x)u2  figure are the corresponding solutions in the case of an ideal

+ n. U312 (\) sin 2 X. wiggler.
There are two principal differences between the orbits for

7IJ2 = (f0 - 7kw v3 + 2f2ls (X,) sin X)u, the real and ideal wigglers. The first is that the discrepancies
- 2 u3 (Io(X) + 12 (A) cos 2x), in the velocities increase as up approaches PJoc(=fo/Ik,.), and

the second is that an additional class of unstable orbits exists

7b = nw i (Io(X,) + 12 (X) cos 2 x) - f2w ul11 (X) sin 2X, for the real wiggler. The unstable orbits are denoted in the

= k, (ul cos X + 02 sin X), figure by the dotted lines, and the points A, B, and C represent
the orbital stability boundaries for the real and idealized wig-

x =kw),-' (-ut sin x + a2 cos x - ,03) (4) glers. The case of the ideal wiggler model has been amply
whee ntreated in the literature and will not be discussed here; how-where - l eB/mcl, -- (1 - v2 c 2) - l , and (o, u2 , v3 ) ever, a brief analysis of the stability of the helical orbits in a

denote the components of the velocity in a frame rotating with realizable wiggler is necessary. A linear perturbation analysis
the wiggler and specified by the basis vectors et = e cos X - of (4) about the helical trajectories shows that Sul, 5u3, and
ee sin x, e2 - sin X + e cos x, and i 3 = e,. Within the con- SX can be expressed in terms of 6X and 52 (where the "S"
text of (4), 7 and the total energy are constants of the motion. denotes the perturbed quantities), which satisfy the equation

The helical orbits are obtained by requiring steady-state solu-
tions in which ou, u2 , 03, X, and x are constants. As a result, d +1) (/d t + 5 ) =0 (
we musthave UZ UW, U2 =0, U3=i,x ,Ir/2,andA=u;w/u,, \t U 2
where up (>0) is a constant, and

where
2fl,, ul It (X)/X

u no a 2f,.,1 ()) (5) 111 . ,- +.AB 2  (8)
_ I j2 +.
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and we implicitly assume here that all electrons located a distance
r 1 r from the axis have the same initial axial velocity, and that

wa =kwu, lkwu 5  2 A19 2(X). ,the initial beara profile is fixed. Equation (11) represents anW L Y up T extension of a model current used previously by Sprangle e: al.
2 to - (91 to include a nonuniform radial profile and radial inhomog-

0.11-- ±2 Il () eneities in the orbits. Under the assumptions that the beam
7 Melectrons enter the interaction region on the helical orbits, and

that the beain density is sufficiently low that operation is in
the low-gain regime, the current may be written to lowest

SA ckw2 order as
A2 3- 1k. - 2kwIf

W.S(x, 0 = -nb (r) f- dto [U.(r) (cos Xe, - sin X;,)
B2 2-2-. 1(I+ X2) no 2--,, 00 12(AX)7C W I (r) a l(t - (t,r, ro)). (13)

*+ X2 kw u (I.(8 M, ~ 1(x) (9) Before proceding with the derivation, it should be pointed out
that for given values of Bo, Bw,, X,, and - there is a unique

Evidently WZ22 must be computed separately for each class of stable helical orbit. More specifically, if the parameters which

orbit (denoted by group I for no < tkw 1u, and 11 for no > characterize the axial and wiggler fields are fixed, then a shift

7kw up in Fig. 1), and okbital instability occurs whenever either in energy implies a shift in radial position (and vice versa), and

2 or W are less than zero. The orbital stability boundaies a finite spread in radial displacements is associated with a

therefore, occur when either of these characteristic frequencies fimite beam energy spread (i.e., dy/dr * 0).
vanishes. Evaluation of 2.2, for the group I and I orbits re- For the sake of simplicity, we shall now assume that kR >> 1,
veals the stability behavior shown in Fig. 1. since it is expected which is equivalent to the requirement that resonance occurs

to be difficult to propagate an electron beam on the unstable far from the waveguide cutoffs. Thus, the principal character-

orbits, we shall restrict the radiation analysis to cases in which istic of the waveguide structure included is the radial localiza-

the unperturbed electron trajectories are the stable solutions tion of the modes. A more complete analysis valid for arbitrary

* to (6). values of kR is curtentiy in preparation. As a consequence,

In order to determine the gain, we make use of Maxwell's for the low gain, tenuous beam regime the dispersion relation

equations under the assumption that the beam density is mffi- for both the TE and TM modes is given approximately by the

ciently low that space-charge effects can be ignored. It should free space limit
be remarked here that our initial use of the waveguide modes
in (2) and (3) implicitly assumed that the invariant beam

* plasma frequency was much lower than the waveguide cutoff, where variations in the wavenumber can be neglected. In addi.
otherwise the model must be extended to include the normal tion, the diagonalization of the radial mode structure can be
modes in a dielectric-filled waveguidc Under these assump- accomplished in (10) by use of the orthogonality properties
tions, the vector potential satisfies of the Bessel functions, and we can show that

( g _, 2) SA,(x, t) - (X, t) (10) d_ _

.jR (V durr)W3 1 o)(cs 4',) (15

where the source current is given as
f 1(t,r, to) " dnr- r1(wtrJt~rn)CO))t)  (15

SJ~x, r) ,-enb (r) u,,e(r) d ao 17(0, r, to) 8 (t - '(to, r, t)), dr w()u r)Jp; cojt) ()

. r na(r) )(, r, to) for the TE mode, and

(11) dX
1

where nb (r) is the beam density profile, 71(t, r, to) is the mo- al, = I(, + 1) kc'R'J'.I(xi.)
mentum of a particle at radius P and time t which crossed the R

z = 0 plane at time to, •0 Wb W u- Wr1w(r ln)(sin k), (16)

ow7(to.P, Z)- o + dz' (12) for the TM mode. In(15) and (16), 2a 4 w4re2 n lm, 8alE
(o V (to,r,Z), eSA 1 /mc2 ,

vz (to, r, z) is the axial velocity of a particle at (r, z) which
entered the interaction region at time to, and uo(r) is the 0 J 0- 0 +- dz' k+lkW -t (17)

Mnitial axial velocity of the beam as a function r. Observe that o d +/
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is the relative phase of the electrons in the ponderomotive For operation in the linear regime prior to electron trapping

frame, and ((- - (2w) - ' fr. d t('") represents an average in the ponderomotive potential, we write =o + Akiz + 6

over the initial phase P9.- and expand (18) and (19).to first order in 6t,, where .k, -
In order to compute the gains for the waveguide modes, we k + Ik. - w1/u. Using the solutions which result, we find the

must now derive an expression for the phase, @,, to first order small-signal gain for a system of length L to be

in the amplitudes Sal,. Because d2' 0/dz- =reu dv/d, this
may be accomplished by means of a liner perturbation theory G L dz .
of the orbit equations in the presence of the radiation fiekls. , - ( ez .a 3 (z)
The unperturbed trajectories in this analysis are assumed to
be the helical orbits discussed previously. However,,it is evi- (k +2 2L fA u

dent that the phase will depend linearly upon the amplitudes 8 .2R2 dr 2 u
of each of the TM and TE modes present in the system. Hence, 8 R2 0

all of the radial modes will be coupled through (15) and (16), dF $Q(.) s "-\ (23)

and the strength of the coupling will depend upon the ampli- dO, at(3

tudes as well as the overlap of the each specific radial eigen-
mode with the current. In older to simplify the analysis, we where 8, a Ak#L/2,

restrict consideration to the treatment of an FEL amplifer in a (P)(24'.' (24)
which the initial conditions can be tailored by means of the F), = -12. (XI.)
injection of radiation which results in the presence of a specific
TE, or TMIn radial eigenmode. Within the context of these for the TEen mode, and
approximations it can be shown that

.d 2  , 2 "r'do s ,O,, 1+ , J I (X,,.) (25)

4 i V12 for the TM,. mode. Observe that the radial integral in (23)
(18) describes the overlap between the electron current and the

for the TE mode, and- radial profile of the waveguide eigenmode and, hence, includes
d 2 the effects modeled in the past by a filling factor in a self-

d (k +k.)c 0 ) I 1i. consistent way. It also follows that the'radial mode structure
9W(X )-J "" 11 Pin imposes a selection rule in that the TE or TMIn modes undergo

(19) resonant amplification at frequencies w = (k + Ikw)u;. This
(1)result becomes clear when we consider that to lowest order

for the TM mode. In addition, 9 " ' k. u (i.e., X " ±=/2), so that a,(z, O, t) - Akz to within

+  (np&-2- (20)
lk+I (k +Ik,,) vc (521 - AZ25(a -Ai 4

where Atw. W - (k + lk,)t 1 denotes the frequency mismatch, a multiple of r/2. In addition, since each radial eigenmode
"  obeys this selection rule, inclusion of a multiplicity of such

A k 4kUl(l +X2 )], (21) modes in the formulation would not alter this property.
VW Finally, the gain exhibits large enhancements for frequencies

* and near resonance as the single-particle orbits approach the transi-
tion to orbital instability (122,2 - 0). The essential differences

"B-1, . ul) (Al -. u) between this aspect of(23) and the results of the theories [2],
;1 \ I- [31 based on an ideal wiggler are that 1) for group I orbits

+ .o 2w () +X), (22) < -lkw u,) the value of Be at which orbital instability
2 l,() - kv1 (I . (22) occurs is shifted downward, and 2) a new class of unstable

Equaionsorbits has appeared for trajectories in group I (Si, > 7kw vp).
Equations (18) and (19) describe the effect of the pondero- It is illustrative to consider the gain for the case of a thin
motive potential which results from the beating of the radial annular beam in which the electron density is assumed io be
and wiggler fields. The presence of the axial guide field acts to constant (no) within Re - AR <r4RO. As a result, in the
enhance the ponderomotive potential. Examination of (20) limit in which AR <<Re the beam density is given approxi-
clearly shows that since Awl = 0 near resonance, 01(A) be- mately by nb (r) = noARS (r - Ro) and the maximum gain
comes large whenever n2,2 vanishes. This occurs for no - becomes
-kwuq and denotes the transition to orbital instability (7). +

As a consequence, both the ponderomotive potential and the GE R. (4 N, ' '

gain are expected to be significantly enhanced for orbits in "
this regime. (26)
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10-3 A. The gain bandwidth described by (23) arises from two ef-
I an fects. The fust is the well;known frequency mismatch arising
3c, from the form function d(sin 01/9,)/d 1 , which for a thin

Tall 4,, " ',,annulus yields a frequency spread

4 wofr - T _ (28)

where w, - Ikw.Pzc/(l - P,) is the resonant frequency -of the
R nz Ro,P, 1 Ith FEL Doppler resonance. The second source of spectral.

broadening stems from the variations of the axial velocity with

1.-, radial position which results in a radial variation in w t of the
form

a, - x20,. AR" (29)

S , .-, A . i . h , ,A' , ,. ~, zo z ' for a thin annulus. Further, in order for the former spectral

Fig. 2. Graph of the maxium gain vesw the axial guide field for both broadening effect to be dominant, condition (27) must be
pomp I and H orbits and the TEZ1 aad TM, Modes, satisfied. Since this condition is stringent, it is expected that

the latter broadening process will be dominant (i.e., AC 2 >

where t wboao/7 1 ck,. is the beam strength parameter, AW I) in most cases of practical interest.
N,. L/,. is the number of wiggler periods within the inter- In conclusion, we find that the analysis of the FEL gain with
action region, ,o a kwRe, and the frequency is given by a realizable wiggler introduces fundamental differences in
Wo 1(1 + us/c)78 k va. As mentioned previously, specifica comparison with the usual one-dimensional analyses with an
tion of Be, B., X, and -f defimes a unique beam radius for ideal wiggler, such as 'in [21-[5]. The three-dimensional
orbits n groups I or II. Hence, if the magnetic field.param- analysis presented here describes the effects of I) the orbital
eters are fixed then finite AR implies a finite beam energy instability for both classes of equilibrium trajectory, 2) the
spread A-f; and we estimate from (6) that AR - kwR2&o/?-iw overlap of the radiation and electron beams. usually included

• for 4o < 1. Since -our analys is based upon the assumption by means of a phtntimenoogical filling factor, and 3) the
of a nearly monoenergetic beam which is valid only for A7 < selection rule that requires the resonant amplification of the
(47Nw) - , we must also require that TE1 . and TM1 n modes at the Ith FEL Doppler upshift.
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Three-dimensional theory of the free-electron laser in the collective regime
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A fully self-cocsistent theory of the free-electron laser is derived in the Collective regime which in-
eludes all transvems variation in the wiggler field as well as the effects of a finite waveguide
geometry. A general orbit theory is derived by perturbation about the steady-state trajectories in a
configuration which consists of an axial guide field in addition to the helical wiggler field, and used

* L to obtain the source current and charge density for the Maxwell-Pomson equations. By this means,
a set of coupled differential equations is found which describes an arbitrary radial beam profile. A
dispersion equation is obtained under the assumption of a thin mooemaergedc beam, and solved nu.
merically for the growth ram of the TE,, and TMl, modes in a cylidrical waveguide. A selection
rule is found by which the TEE, or TM.. modes are resonant at the lth frel. . Doppler
upshift.

L INTRODUCTION drive the FEL interaction by solution of the Vlasov equa-
tion. The source current and charge density are then used

Interest in the free-electron laser (FEL) as a source of to obtain Maxwell's equations subject to boundary condi-
* coherent radiation with wavelengths in the millimeter tions suitable to describe a lass-free cylindrical waveguide.

range and below has been maintained by both experimen- In this mannaer, a set of differential equations result which
tall - ' and theoretical 9-2 4 studies. Experiments designed model the presence of an arbitrary radial beam profile of
to operate in the infrared have, of late, concentrated on electrons which to lowest order execute the steady-state
the use of a linearly polarized wiggler field composed of trajectories. In order to obtain analytic solutions to these
permanent magnets.3' In contrast, experiments at longer differential equations, the approximation of a thin beam
wavelengths (-1-5 mm) generally make use of helical (i.e., smll radial profile) is imposed which is consistent
wiggler fields in concert with an axial guide field. The ia- with the assumption of a nearly monoenergetic beam..
clusion of an axial .guide field is necessitated by the high The organization of the paper is as follows. The orbit
currents (-1 kA) employed, and such experiments can be theory is presented in Sec. II, and applied to obtain the
made to operate in the collective regime.7'8 Theoretical source current and charge density in Sec. I1. The coupled
analyses of the helical wiggler FEL experiments have, field equations are derived in Sec IV for an arbitrary radi.
hitherto, been able to treat the collective regime only in al profile. The assumption of a thin, monoenergetic beam

* the limit of an idealized one-dimensional wiggler field is imposed in Sec. V and used to obtain and solve the
which is valid only as long as the electron-beam radius is dispersion equation. A summary and discussion is
much shorter than the wiggler period."'12 -

14,17 - 2'' 23 A presented in Sec. VI.
fully self-consistent, three-dimensional theory which in-
cludes all transverse variations of the wiggler field as well
as the effects of a finite waveguide geometry has recently E. SINGLE-PARTICLE ORBITS*appeared ; however, it is restricted, to the low-gain,
singe-artcle roweie, it is orprpse int this on 6 ~ The physical configuration we employ is that of a rela-sin gle-parti le regim e It is ou r" p up oe in th is w o rk to t v s i l c = b a n p o a a i g t r u h a m i n
extend the three-dimesional theory to the collective re- tvistic electron beam propagating through an ambient
gime. In contrast, a nonlinear theory has been developed magnetic field composed of a periodic helical wiggler field
by CoLson and Richard for a helical wiggler/pulsed and a uform guide field
electron-beam configuration. The radiation mode struc- B()=Bo'+fl( ) (I)
ture is assumed to be that of an optical resonator and is

i described in a three-dimensional manner; however, the where Bo denotes the magnitude of the guide field, and
wiggler field and single-particle orbits are described in the the wiggler field is taken to be that generated by a bifilar
idealized limit in which transverse gradients are ignored. helix:27

In addition, no axial guide field is included in the treat-
ment. %(T) - 2B. ( LcoX e, -- iI ( .sinX

To this end, we first derive the single-particle trajec- (2)
- tories of electrons in the self-consistent static magnetic

fields by perturbation about the steady-state, helical or- In Eq. (2), B. is the amplitude of the wiggler field,
bits. 2'4 6- - These orbits are then used to obtain expres. X.nk,r, X.9-kz, k,,21/rA (where A, defines the
sions for the source current and charge density which wiggler period), and I, and I. are the modified Bessel

28 3438
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function of the first kind of order n and its derivative, .
respectively.

The basic equations governing the single-particle orbits U U
in the static magntreic field are

y - [flo-yk.u +2flI,()sinX]u2

+f,u 3]12(..)+;Ln2X -]

ruz -[Nl-yk~u3 +.[I1,()sinX]U, s-GOU FN

fl"v3 ,, Io(A+1 2()com2X ,

.=k.(uco&X+u 2sinX), t L

Xi kI.-'(-visinX+V2cosX-Xu3) ,
1 2

0o1-ye kw,
where .,aJIeBo.,./mcI. ly(l-u 2/cZ)-tn, and FIG.. Oo of heaial velocity of thesteady-sate orbits
(uj2,u $ ) denote the components of the velocity in a FG !. Graph orWal adito(he stmdels
frame rotating with the wiggler and specified by the basis v - h o i and rmlizable wiler
vectors t-icoLTX-fsinX, f -f.sinX4+icoX, and
i3 =f. It is clear that y (i.e., the total energy) is a con- r 6[il& y - k-[lu -Y/,, ± 2 , (Ako)]u2 -2flwuI 2(0 )6X
stant of-the motion. The class of helical orbits is found by
requiring steady-state solutions in which Ut, 02, U3, X, and r v =[lo-'kiull ±2l. ,(ab)]8uv
X. are constants. 24'27 In this work, the orbits we employ
ae obtained by expansion about the steady-state trajec- -(rk'u. +2"11,(o)]6v 3
tories, and a review of the propertie of the helical orbits -2flUtlAO-5X.[z(A)+4f(A.)-,J 1 (A0)],
is useful,

The steady-state requirement in (3) results in trajectories .Yi3 =2zU.(A0)X+2 'Inr, ().o)i 2 , (6)
in which uo=u,, U2=0, u3=-Ull, X-±r/2, and 6X=-k.(8u 3±A-'8 I O;2 jv1 8M ,)
X-T-v/ul, where Ull(>0) is a constant and

2fnl.III().)/ ) where we denote Ao=:t./vll. The system of first-order
I,,, , 5. 7 ,(.). differential equations represented by (6) can be simplified

to a pair of fourth-order equations

Observe tha (4) reduces to the resut for an ideal d2 + n d2  =0+ U2

wiggler ' -2 in the limit as X-0. Final determination of d:2  I t 2 2 I lx 0, (7)
the orbit requires knowledge of either u., oil, or (specfi" when
cation of any one of these is sufficient to determine the where
other two) which, in turn, requires an additional equation a 0 z=.L( + )± ((2_W)2 4 f, (
relating these quantities:1

and

l2[( 1--X I +1 2 )- ]"=.- .2±2P.( l+ 2 )I1 (X), (50)12ek!u 2y flwIk 1 llAj'O-( 1+.q)Ia(A0 ), J

where o.=uf /yk.,.c. Solution of these equations pr*- +2- t tlkeUl t(1+AL) 2 (AL)
duces two distinct classes of trajectory as shown in Fig. I

* in which we plot ulA vs Po (for ,.-O.05 and y- .). A2W±ckAo-y-'( -2rykull),
Also shown in the figure are the corresponding solutions
in the limit of an ideal wiggler. B, - -2r- 2flwn I( l +)lo±2f1 1 )( o1 2 (4)

We.now consider the characteristics of particle trajec-
tories which are close to these steady-state trajectories. To
this end we write uV=u.+8u,, Uz=8U2, UI=UI,+8U+ ,  and 0 11 l/C. Observe that l't and flj must be oaput .

SX=-r/2+BX, and ;L=T;u./uI+6 . To first order in ed separately for each class of steady-state orbit, and that
the perturbed quantities, therefore, we find that Eq. (3) an orbital instability occurs whenever either f£l or fl z be-
implies comes negative. These frequencies are plotted in Fig. 2
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1.0

0.3 o

0.6/

FtG. 7- Graphs of /€:/¢2 (dashed line and n1/c'k.2 (sofid line) vs 1.7,/, for group I and group 11 orbits.

verus go (for 0. -0.05 and r' 3.5) for stable trajectories the veltyoare

GO (i.e., l 2; l>0). Note that the unstable trajectories are 2

.21

represented in Fix. I by the dashed lines It is evident 8ul T_-.-[: -21 (;Lo)a2cos(f1,t_-02)
from Fg. 2 that I. >>62 and I-k, ull except for a ar- n2

row range of axial fields corresponding to group 11 orbits
in the neighborhood of 11-ykwull. Also, 622 varies wide- +P2VJJ12(A)CS(f1t -#I2)] (9)
ly and the orbital instability occurs when nt2 < 0.

The solutions to Eq. (7) are of the form and
u2 1- -a/sin(Ilt -01)-a2sin(fl2t-02) 21 -

ko = -O [1 11 (X)azcos(nzt -02)
andf2

8X- =-plsin(flit -- 0)-p2sin(n2t -02) , T-p2olJ2(;L)CosU12t -- 0 )] . (10)

where a, az, P, 1P2, 01, 0$2, 0, and 02 are the integration Observe that 8u0S1 V=const. The further constraint
40 constants. Using these solutions we can derive the ap- imposed by energy conservation implies that 0,-02, and

propriate forms for 8ul and 8V3 from Eqs. (6). However,
we note that since f1It <k Oll, such terms will provide for
interactions at higher harmonics of the free-electron-lasera 44"12 [_2 2
Doppler upshift. Thus, since we confine ourselves to a2=--- ( -= ) +:II()o)+VJJP212()Ao)  0 (l)

treatment of the interaction at the fundamental. Doppler _H2
upshift, we are justified in neglecting oscillatory terms in
ill (which is equivalent to the requirement that As a consequence, the orbits can be written in the follow-

a, -=pt -=0). Within this context, the other components of ing form in rectangular coordinates:

p, =.cosk~z +( I +)L2)-1/a + [P. cos(k~z -f2t)-P, sin(kz- fzt) ]

., ~ ~~+(1 + k )-'/na_[ Pcos( k,,z + At)+ P sin(k ,Z+nzt)]

p., =p~sin kwz + ( I +.V) -'/a+[Psin(k,,z -fnzt) + P.cos(k~z - (2t)]I

+(I1 + kz)-ta_[ Pssin(k~z + f2t)-PCOS(k~Z+£/2t)], (12)

limi /O0
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Before closing this section, some discussion is in order in regard to the transition to orbital instability at 11,=0. The
gain exhibits large enhancements in this region since the natural response frequency of electron motion (M2 in the
wiggler frame) is small and can be comparable to the frequency of the ponderomotive wave which drives the stimulated
radiation process in free-electron lasers. For simplicity, we consider the product ffl2 rather than P12 independently
(since nt -k, u1 this cannot affect the orbital instability criterion), and find that

-(1 +4)[±flo±2n.I(Ao)-rkujj jZ(Ae)-y k,.uj Y(o)=O (13)

at the transition to orbital instability, where

(14

and

Y(A0o)M0i(l+ )I1'(4)--I,(;o) . (15)

In the limit in which )o<<l and B <<Bo, Eq. (13) reduces to (R -+))flo--ykwvt =0, which is the orbital instability
threshold found using an idealized one-dimensional wiggler field. 16"2

III. THE SOURCE CURRENT AND CHARGE DENSITY

The source current and charge density are obtained from the moments of the perturbed distribution function

Sv'tz)),z') CF (1'

where F is the equilibrium distribution, 8E and 6B are the fluctuating electromagnetic fields, 7rz') is the position of the
electron relative to the ais of symmetry at z', -U') = to + f"d'/v(r-(z'),z') is the sum of the time required for an elec-
tron to travel from (-(z -0),z =0) at the start of the iteraction region to (iMTz =z'),z =z') and the entry time to. The
equilibrium distribution must be a function of the constants of the motion (PwP,,), where small PS and P are required.
As a consequence, we choose a distribution of the form

Fb(P,,P,,p)=nb8(P )8Py)Gb(p) (17)

where nb is the average beam density, and Gb(p) is an arbitrary function of the total momentum. Ln a.dtion, we work
with vector and scalar potentials of the form

(6A(It),8(# ,t) )= -+(8,4('),$('X) )exp( - iat) +c.c. (1 81

". With respect to the basis i" -L(& ii, integration of(16) yields

-6-- +._ H.. +D.a Fb(P,,p) (19),p +,., . p ap.a

where

TP- (++c + _ +p +p+4 . _ )], (20)

+T f - _

- tie. + ..e + - UV,) + U 2 VU A,- 7-TU(V.8; + -V+8_.) J (21)

where 1z,z')erz)-1z'),p±-p -p,, pA -=-84 T i8;., V_ +-a: i8,, V, ma, and 0. a k _,--z).
The current and charge density are found by computation of the appropriate moments of (19) as

&,+ = - .. , = -- fdP~dP'dp(l+;.)-/2P-8?. (22)

and

H-6
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6=-e f P.dP,dPd0 +,X'I -7. (23)

By application of Floquet's theorem, we express the axial and azimuthal structure of the fields and sources in the form

8(F,z)= j &?.(r)exp(k+nk.)r ii9], (24)

in cylindrical coordinates. As might be expected, substitution of (19) into (22) and (23) results in source currents ,.

and charge densities 8P.., each of which depends upon a complicated superposition of many harmonics of &i,.. and

8 0t.'. However, in the limit in which the frequency w>>02, a I 61(r) I /ar <<1, and aI 8 04.(r) I /r <<k we find the
comparatively simple forms

..- 1r fo , I.- o -. +tl aP

4i+ L R4 J. --kp) (25)

and

IPb I a
SP . -i 7dp- p.(Ht"+. +Ht ++'-)-tPll(ck8't -w ' l]- Ia

Y1 VW (o-k.+1v11 P ap

"-- t. V. S.(..) G(p) (26)

where a!it.( Fi (8J,). &i.-+E--' Z,." ),(i(.). )a.I ob-4ire n5 /m is the average plasma frequency,

v&Aaar _lr.

/ A - .) (t) tC V_} r - '(+) -v ) ' -

Hzn mia6~ -- CVt~~8$1,)V (I T"tv- t-vaiS, (27)

V CZ + a
oJ+ fz- k ,+lll ow-T n2Z- k m+lUll ow- k.+ 'Vii

and

1 + 1 2 (28)
oj-fl2 -kR+llj + 2-k+lUl (-kj+iVll

Observe that 8.,,4% has been omitted because the specification of a gauge condition allows us to eliminate one of the

components (89,a), and we choose to deal with ,+ and a.
It should also be remarked that our choice of distribution (17) is equivalent to the requirement that the unperturbed

orbits are of the steady-state type (P, =P, =0). Such orbits are axicentered, and there is a unique mapping between the
radius of the orbit and the particle energy (for given B., B 0 , and A,). As a consequence, a small spread in the energy of
the beam will imply a narrow radial profile.

IV. THE MAXWELL-POISSON EQUATIONS

The starting point for the development in this section is the Maxwell-Poisson equations

Ld'_d!L +P.--" 1 ± . _ a t.& (29)
r [ dr dr . z 2 ] C

I +P.2_L " -+ ' 1o,
[-rA-+pd r2 1 -

(30)

as well as the Lorentz gauge condition

k = a6h1 (+ , a (31)

t H-7
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.where paZ/c 2 -k. In order to carry the analysis further, a distribution function must be specified in order to evalu-
i ate the sources. We choose Gb(p)=N(p)6[p -p (r)], where p(r) is the mapping between the energy and the radius of the

steady-state trajectory

p(r)=mC(I +X2) /2[)' 0±_+2y ,,X -2 ( 1 +X 2)1(X)j , (32)

N(p) is an arbitrary function of p which is chosen such that N(p(r)) models the density profile, and
.(r)04re 2 no(p(r))/m is the local plasma frequency. As a consequence, by retaining only the dominant coupling
terms, we find

., + T T _:; I'm a i ct .,t + yJV;2.± 2_ ; (I2,.±2) (33)

and

where

-2(r) f f--kM faI+a 2  +Va-, (35

(2(r Pw a2 c2k, km +l.ull, +U

XI" 4(r) - +k " (+) kn l (36)2 2 k 8. +lull '

"CC-) 2_ €or) p., W2_C2k, z  ( I --k2) --k. +lull '.

,".T, -- 2r c 2 pl, ck. y2(l +,X2)(w-kk+111l) 2  -~) o

"I" (r) P._ _ok.__ ______c 2 -( l +;2)kx +lu(39)

In Eqs P3)(9)( 11, ar i2pic fX)w+uncon of rand
[1 11

. . 4["i In Eqs. (35)-(39) (r,ulpv.) are implicit functions of r and

QOOM (40)
[(I +;L2 )[f2o±2n,. 1(X)J-rk.oll JZ()-;.2rk.ll Y00

"' which contains a singularity at the transition to orbital instability for the group I and group II orbits. In the vicinity of
these points, therefore, we expect the interaction strength to be greatly enhanced. Analogous results were found in the
idealized one-dimensional theory. 6'20 As a consequence, we obtain the following set of coupled differential equations:r...,.. .. _2t,._, 1

dr d• .- 2 8;1 . , -- At n- W+1."-1n;-6T - v i;II/n - t;. +1; -,+1 • (42)
L r

In order to solve this set of differential equations, we across the boundary of the electron beam). The problem,
mus, specify the boundary conditions appropriate to a therefore, has been specified with the essential physics of
cylindrical waveguide of radius R,. We assume the walls the interaction contained within the radial dependence of
to be grounded and at zero potential; hence, the coupling coefficients in (41) and (42). It is important

."t, 1,{R)&Z¢t 1(R,) to observe that with the above choice of indices, the az-
imuthal mode number for the electromagnetic waveguide

d modes is given by I ± 1, and not simply by I. Thus, if we
=[r(, + , wish to study the TE,, or TMIm modes forthe 6A1 ±). Id. L Rq /_l I J,,. . R--

eigenvector, then we must set 1=0.
I: should be observed that Eqs. (4t)-(43) describe a cou-
pling between five harmonic components: at., V. THE LIMIT OF A THIN BEAM
& ._ and &i't +-1. Finally, we also assume that A solution to Eqs. (41)-(43) is found for the case of a
the potentials are continuous within the waveguide (i.e., thin beam in which the density profile is assumed to be
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constant (no) within the range Ro-&R < r<Ro. As a re-
suit. in the limit in which W.R <<R 0 the beam density is (47)

* given approximately by 8A1. =Bj11,J;1 (p.r) + C.V,5 (p.,r)

nb(r)=noAJ r-RO) (44)
It should be remarked that we have assumed the unper- for r >R 0 . In (46) and (47)Jg(x) and N,(x) are the regu-

turbed orbits to be the stable steady-state trajectories. lar Bessel functions of the first and second kind of order 1.
These orbits are aicentered and, for orbits of either group Observe that each field quantity (i.e., Ut.A, , '.,s1-

I or group II, there is a unique mapping between y and A. A_ R+I, . and 8A) ..- ) requires three coef-
* (i.e., the orbit radius) for given Bo, B,, and ,. Thus, it is ficients to characterize the solution throughout the

sufficient to specify the class of orbit and Ro(yo) in order waveguide. Two of these coefficients may be determined
to obtain yo(Ro). In addition, a spread in radius U. of from the boundary conditions at r =R 0 , and R.. The
the beam is equivalent to an energy spread Ay given by third coefficient is found by multiplying the field equa-

tions by r and integrating over Ro-e<r<Ro+e in the
Ay.. Yo- I .R (45) limit e-O. This procedure determines the "jump condi-

* Yo (l+)4)Q(k4 ) Ro ' tion"acrossthethinbeam, and allows us to obtain a 5 X 5
matrix equation in, for example, the coefficients A,.n,where X-kRo. Observe that within the context of 6ur A,., 8 ., A: 1  +1,At~ 1  n 4, bevAt+l..-I, Ai'll~o+l, A+,,,.a, and A,-+,,.-,. Observe

analysis, a thin beam is equivalent to a relatively small en- that the coupling to the field components in 8A1:F1.,=1
ergy spread. occurs not through the source terms in the field equations

The solutions are of the form but rather through the boundary condition at the

&At."=AJ1T1(p~). 46) waveguide wall.
8k-, = g.p, 8 1 =AT,,Jt;:,(p,,r), (46) The matrix equation obtained in this manner can be

for 0 <r<Ro, and written as

1-- I- - RoRW/..+ 1

T 1+) ) --ROART 4 . R4V..,~ A(+)... =0,(82 (48

j-RoRT.. -RojRY +..-
2 2

where the equations for A-,'..+1 and At,..,_ have al- where,,--pRo, ,p-- ,,, and J is the derivative of the
ready been eliminated, Bessel function. In (52) and (53),

* - Ej,, mD,1, -- 0A, (49) r~, (11 , 4 2(
2 kat_ _d, .

_11(.) d[Nk(.Vk(.)](54)

22 -;V T ~
ef_+t~m~glk ami r~ 'kn +(50)(. 7--[ Rd g. 1)S , ) ,; (55)

+2 1I ;+~~~ j1 1 ,., + .jRo4A kmf2(n ' (55)

where /lm.1 Vitl.3, /xl l, ) Tt , , and Xc,, denote and
those quantities specified in Eqs. (35)-439) in which the
substitution o(r)=nrelno/m has been made. In addi- T,.i = ±t( 1 .),,,

L (,'.:. ( , (52) - J,(I. ) [..V(G,) (56)

and The dispersion equation is found by setting the deter-
".. .(tati)r~i~; minant of this interaction matrix to zero.

( 1
s 

2 Substantial simplification occurs in the limit in which
Subtania simp/:latio ocur in the limit in which

'111; 41.o 1. 1 T I )/S "N' 1 (53 ) -k +lullI <<a), k,, +lull and we obtain

H-9
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-l 2,-

X". ,,- 0 b C . a PJ+I,.. 2--WT- Iwt±, , (59);:"-YO U1.- co', k. y~l+4ll,,-k.+,jul' '

- "(57) 
w

2 2 (60)
U"~ Wb C 0) V

.V1. r oe y 2 UlI  y ~l+ A4 )( ) k . + jujl)22 .

(58) and

2 ( f - . 2 2

- c co-kn, ull J+2 - + _ (61)
rxi  -)

2  21 c,, 02 o± L 2 -k.+u' 1 1  
" :Pn% -k.,+4 ul

where 0-m I + A4Q(X). Observe that for all cases of practical interest u, <<c and I P*. << jW _*.1 , As a
consequence, the terms in can be ignored. This is equivalent to the neglect of any direct coupling between the
electromagnetic modes ,4i;.,;j. In addition, we shall neglect the coupling to the &,g;:,.zt modes, so that

" 2" 2"io " , )± (,,; ) • ( 6 2 )

Within the context of this approximation, the dispersion equation is of the form

fo~'b 'iT 02 ___ ___4'= 0  _ R4AX .(+- + 1 (63)
t+ A 2yo¢2 12 yo(w-k.+U1 l) e +I ,..I JI

Finally, if the solution is restricted to the first quadrant in (W,k,) space, then I - I + and (63) can be
*approximated by

- R
-  

22 264)v 61 + 4 I.n -It, : 4' -,c -!,ROA )t X,. (64)

17+ 7A, 7 2c 2 20(-.+uj

The complete dispersion equation (48) has been solved ty) occurs for the group II orbits in one dimension. In ad-
numerically for y=3.5, a)i/rylck. = O.l, (l,,/yck, dition, 0 vanishes at f%/yck.=.l.25 (group II orbits) and
=0.05, /Ro--O=0.1, k,= 1.5, and a wide range of axi- the growth rate may be expected to vanish at this point as

al guide fields for both the TE,, and TMt waveguide well.
modes. It should be remarked before we proceed further The growth rate lmk./k, is plotted versus o/ck in
with a description of the numerical analysis that each of Fig. 4 for the TE, I mode and flo/rck. =0.0 and 0.5. The
the off-diagonal elements of the dispersion tensor in Eq. waveguide cutoff occurs at o/ck._1.23 and the two
(48) is directly proportional to V and, hence, the coupling peaks shown for each value of the axial guide field corre-
coefficient also depends upon this function. The variation spond to the upper and lower intersections between the
of 0 with the axial guide field, therefore, provides valu- space-charge wave and the waveguide mode. This figure
able insight into the effect of Bo on the radiation growth represents the cases corresponding to group I orbits, and
rate. To this end, we plot 0P versus CNo/rck,. in Fig. 3, in we observe that the unstable spectrum is quite narrow but
which the distinction between the value of the function tends to broaden slightly with increasing Bo correspond-

.., for group I and group II orbits is clearly made. As dis- ing to decremes in ull as the transition to orbital instability
cussed in Sec. II, 0 is characterized by singularities for is approached. In addition, the resonant frequency de-
both groups of orbits at the transitions to orbital instabili- creases relatively fast with increasing Bo for the upper in-
ty (13), which occur at fl 0/yck. 0.75 (group I orbits) tersection, but is not very sensitive to the value of the

.nd f1/;ck=.0.62 (group I orbits) for the parameters guide field for the lower intersection. Finally, we observe
considered. While the growth rates at these points are that the two peaks are well separated and that the growth
also singular, it should be recognized that the linear rate corresponding to the upper intersection is the larger
theory itself breaks down in the vicinity of the singulari- of the two. The peak growth rates and corresponding fre-

ties and a fully nonlinear treatment is required. The quency at peak growth are plotted in Fig. 5 versus
difference between 0 in the present three-dimensional o/yck., in which the singularity at flo/yck.0.75 is
theory and the one-dimensional analog' 0 lies, principally, evident and that the growth rate for the upper intersection
in the fact that no orbital instability (hence, no singulari- exceeds that of the lower intersection over the entire range

H-10
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20 TE 1 MODE

GROUP I J .

jto- 10 .1-'ci. - o.04
-3RI e 0.1

5" It 1A

St0.2 M.4 0.6 0J

no GROUP I ORBITS

- I,,,E,,SC_-IO I

02 0.4 .60O

-10 FIG. 5. Plots of the maximum growth rate -,,d corresixond-
ing frequency for the TE1, mode as a function of the guide fieldFIG. 3. Graph of Ou ! +X 2Q(X) vs the axial guide field for for group I orbits. Both the upper and tower intersection~s are

l! ~both group I and group UI steady-state trajectories. hw.

Ti1 1 MODE

G1OUP I on0T of group I orbits. It is also clear that while the frequency

S. 3. at the upper intersection decreases with decreasing vil, the
0.004 W -V*,,, 6 &I frequency at the lower intersections increases. As a result,

StJck,,, - MB the interactions tend to coalesce with decreasing Ut; how-
ARIRN - &I ever, the cutoff of the TEII mode for the parameters con-
kn - 1.1 sidered is sufficiently low that coalescence does not occur

for the group I orbits and the two lines remain well

'o.003- separated.
The growth rate for group II orbits is plotted versus fre-

-- quency for flo/yck,= 1.0 and 1.5 in Fig. 6 for the TEII
* mode. It is again clear that two peaks are found which

Xr correspond to the upper and lower intersections. Howev-
E er, in the case of 1lo/ykc= 1.0 the axial velocity

(ulI/c=-0.87) is sufficiently low that the two peaks are not
well separated and overlap. This results in a substantially

,, --- - .5 broadened spectrum of unstable waves. As the guide field
is increased the axial velocity also increases and the
separation between the peaks becomes more distinct. This

0.001 --is illustrated for flo/,ck.=1.5 (u11 z0.95) in which the
two peaks are seen to be well separated. The peak growth
rates and frequencies corresponding to the group 11 orbits
are shown in Fig. 7 versus tlo/yck.,. As in the case of
group I orbits, the growth rates for the upper intersection
everywhere exceed those of the lower intersection. In ad-

10 20 dition, it is clear that the growth rates vanish for
wickw flo/yck.=-I.2S corresponding to the zero of b. Finally,

FIG. 4. Plot of the growth rate limk. 1k vs frequency for the it is seen that as fo/yck, decreases below unity the
TEI mode and group I orbits at Ne/yck, =0.0 and 0.5. coalescence continues rapidly and the resonance is lost for

H-I
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TE1 MODE flo/yck, <0.89 by which point the double peak in the un-
0.04............. .. .stable spectrum has merged to form a single line. As a re-

sult, the interaction is lost at a value of the axial guide

GROUP It field greater than that corresponding to the singularity in
-.o 0V at flo/rck.--0.62 and no difficulties arising from the

,,,lyC,,, -singularity occur.
OL03 a. .a. - a= One characteristic of the resonant nature of the interac-

AN%,= 061 tion which must be emphasized is that the Ith Doppler up-
, t, - I. shift describes interactions for all radial eigenmodes TE,,.

* and TMI,, (mi- 1,2,3,.... ). This constitutes a selection

rule2' which stems from the azimuthal variation of the
4 steady-state orbits; specifically, that 9=kz and the phase
,of the waveguwde modes vanes asE (WV" ,. 1 .0

" ~expik,,x +ihO-iat)-exp(ik,,z +ilkq, -wi)}

The behavior of the growth spectrum for the TM,,
0mode as a function of the axial guide field is qualitatively

0.01 similar to that shown for the TE,, mode. However, the

TM, mode is characterized by a higher cutoff frequency
(at w/ck,=2.55 for the parameters chosen); therefore, the
upper (lower) intersection frequency is lower (higher) for
the TMI, mode than for the TE,1 at a given axial velocity.

. The maximum growth rate and corresponding frequency
10 20 of the TM , modes are plotted versus flo/yck, in Figs. 8

wickw and 9 for the group I and group II orbits, respectively.

FIG. 6. Plot of the growth rate vs frequency for the TE1, The growth rates are found to be comparable to those

mode and group II orbits at flo/yck, =1.0 hand I.5. found for the TE,, mode. It is evident, however, that the
"-upper and lower intersections coalesce for the TMI, before

the singularity in 0 occnrs on both the group I and group
U orbits. Such coalescence was found only on the group

TEll MODE

20 - .. 20 TMI I MODE

o l o,-., k , . - 0 .0 ,t i +, , - 0 .0
7 AMR.-" M1.1.

1.0 1.2 14 1., 18 0.2 0.4 0.6 0.3
GROUP 11 ORBITS GROUP I ORBITSo~os GROU II RBIT, to

0.05 0.01

0.02 EOWE

0.01.

1.0 1.2 1.4 1.6 1.8 02 0.4 0. OA

FIG. 7. Plots of the maximum growth rate and correspond- FIG. 8. Graph of the maximum growth rate and correspond-
ing frequency for the TEt mode as a function of the guide field ing frequency for the TM,, mode vs axial guide field for grouo I
for group It orbits. orbits.
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TMll MODE The principal difference between the orbits in the ideal
20 (one-dimensional) and realizable (three-dimensional)

wigglers is that in three dimensions unstable trajectories

t*p are found for both group I (Nlo<ykUll) and group II
_ -32 (fl>yk ull) orbits, while in one dimension only the

-1 group I trajetories can become unstable. Because of this
10 ,, .am feature, singularities are found in the linear growth rates

ova. Ufr
a .5~ for both types of trajectory in the realizable wiggler,

which contrasts with the one-dimensional theory in which
such a singularity occurs only for the group I class of or-
bit.

S1.4 1. . An additional feature of the three-dimensional theory

GROUP II ORBITS arise from the fact that for given B., B0 , ,, and y at
adz ,most one stable., steady-state orbit of each type exists.

Thus for a specific guide and wiggler-field combination
there is a unique mapping between y and the orbit radius

*which implies that a nearly monoenergetic beam will be
charactuized by a small spread in the radii of the orbits

0.0 described by the constituent electrons. As a result, we

E In have solved the coupled Maxwell-Poisson equations in a
"thin-beam" limit, and obtained the growth rates for the
TEr and TM0 I modes. Wave amplification is found, in
general, at both the upper and lower intersections of the

1.2 1.4 1.1 1.8 waveguide and space-charge modes, although for suffi-
ciently low axial velocities these two unstable regions of
the spactrum are found to coalesce just prior to the point

FIG. 9. Graph of the maximum growth rate and correspond- at which the intersections are lost.
ing frequency for the TM,I mode vs axial guide field for group It should also b- reiterated that amplification of the
U orbits. TE,., or TM5 , modes (m,, 1,2,3,...) occurs only for the

resonance corresponding to the lth Doppler upshift. This
constitutes a selection rule, and occurs because the azimu-

II orbits for the TEaI mode due to the lower value of the thal variation of the steady-state .orbits varies as = kz
cutoff frequency. and the phase of the waveguide modes vary as

exp(ik~z +i1O-it). It is important to recognize, howev-
VL SUMMARY AND DISCUSSION er, that not all beam electrons in an experimental device

in this paper we have developed a collective theory of can be expected to execute the steady-state trajectories

the free-electon laser which includes the effects of finite and, as a consequence, other waveguide modes (i.e., TMo,,

waveguide geometry and transverse gradients in the or TE0,} may be excited as well.
wiggler field. To this end, a Vlasov-Maxwell formulation ACKNOWLEDGMENT
has been employed which is equivalent to a perturbation
expansion of the single-particle orbits to first order in the This work was supported in part by Naval Sea Systems

radiation and space-charge fields. The single-particle or- Command and in part by Naval Electronic Systems Com-

bits are assumed to be helical, steady-state trajectories."4 7  mand.
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RAPID ELECTRON BEAM ACCELERATORS
(REBA-TRONS)

O 1. Introduction

Ultra-high current accelerators are rapidly becoming an active area

of research. 1'2 The development of these devices is mainly motivated by

* a variety of potential applications1'3'4 that are extended over several

areas, including environment, food processing, radiation sources, x-ray

radiography and national defense.

• Among the various accelerating schemes that have the potential to

produce ultra-high power electron beams, induction accelerators1 ,2

appear to be the most promising. Induction accelerators are inherently

low impedance devices and thus are ideally suited to drive high current

beams. The acceleration process is based on the inductive electric

field produced by a time varying magnetic field.

O Quite naturally, induction accelerators are divided into linear5 -13

and cyclic 14- 19 devices. In linear devices the accelerating field is

localized in the gap, while in their cyclic counterparts the electric

field is continuous along the orbit of the accelerated particles. Both

cyclic and linear devices require the same total magnetic flux change to

achieve a given energy increment. However, in linear accelerators the

total change of flux occurs in one transit time, typically in less than

100 nsec, while in cyclic accelerators the same change occurs over

several thousand revolutions in a typical time of one msec.

As a consequence of the slow acceleration, the accelerated beam

must be confined by the focusing magnetic field over long periods of

time and thus field errors, instabilities and radiation losses impose

limitations on the cyclic accelerators. These limitations can be

substantially relaxed if the acceleration could occur rapidly as in

Manuscript approved February 7, 1985.
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" linear accelerators. Therefore, a device that combines the rapid

acceleration of linear accelerators and the compact size of cyclic

accelerators is highly desirable. In this paper, we propose such a

hybrid scheme that combines most of the advantages of linear and cyclic

accelerators. This device has been named REBA-TRON (Rapid Electron Beam

Accelerator). The rebatron is similar to the racetrack induction

accelerator.20

A rebatron is shown schematically in Fig. 1. The high gradient

localized field that is responsible for the rapid acceleration is

produced by convoluted parallel transmission lines, although, other

transmission lines may be more appropriate in an actual system. Since

the acceleration occurs over a few usec, the constraints imposed on the

vertical field are very stringent. In an actual device the vertical

field is generated by two coaxial, cylindrical pl4tes that carry current'

in the opposite direction. The axes of these lines coincide with the

major axis of the toroidal vessel and they are located symmetrically

around the minor axis of the torus. These transmission lines change

mainly the local, vertical magnetic field, while the magnetic flux

through the beam orbit remains approximately constant. The mismatch

between the beam energy and the vertical field is alleviated by a strong

focusing field. This field is generated by a set of Qo - 2 torsatron

windings, i.e., two twisted wires that carry current in the same

direction. In addition to the transverse components of the field, the

torsatron windings provide a zero order toroidal magnetic field. The

purpose of the resistive chamber wall is to facilitate the beam

21trapping in the applied magnetic field. Beam capture in the reba-

trons is very difficult, because the strong focusing field makes the

particle orbit insensitive to the energy mismatch and thus small changes

I2
'." : -i0
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in the betatron (vertical) magnetic field are not sufficient to move the

WU beam from the injection position near the wall to the minor axis of the

torus.

The superior confining properties of twisted quadruple fields have

been recognized for several years. 22  Recently, it has been reported 19

that the Z-2 Stellarator configuration has an energy bandwidth of

-50%.

In this report, we are presenting results from our studies of the

beam dynamics in a rebatron accelerator when the magnetic fields are not

a function of time. In addition, the local vertical magnetic field has

been replaced by a betatron magnetic field. Our results indicate that

both the bandwidth and the maximum electron current that can be confined

by a rebatron are very high. Results with the local, fast varying

vertical field will be reported in a forthcoming publication.

II. The Applied Fields

a. Magnetic Fields

In the local cyclindrical coordinate system eo , e,, es shown in

Fig. 2, the magnetic field components of the Z 2 torsatron are given

by

3 B () + + B (:a)
O 0 0+ 0-

B (0 (1) ) (i
SB + B + _,s-

Bs I rB(0) + B(1) + B(1) , (1c)
S 1 + (0/r) cos s s s+ s-

i~i 3

| I-ii



where

B(o) B AO ) mx I (mx) sinr2m (6 - 'is) 1  (2a)0 O mn- I 0 2m

_(o) B B AC) 2m (mx) cosr2m(, - as) 1  (2b)
SM-I m x 2m

Co)O

B ( B B I I -- A(°t mX I (ex) cos r2m (a -cs)l l , (2c)S 0 M 0 2mrn-I

and
25

B C() - -- B A ) -A(O)r 2
(l ± )mx I' (Mx)". ± 4 r 0o M 2m!._l r x )  M 2m(r)0 4 CO rn-=I - m -

+ r.(mx) 2 + 2m (2m±l) + 11 2 (mx)l sin r(2m ± 1) - 2masl , (3a)

B (1) O.. 0 o B (2m ±) A( ' )  I (mx)* ± 0 rn mx 2m+_I

A(o)rmx I (mx) + (1 2m)I (mx)iicosr(2m ± 1)5 - 2mis', (lb)
m 2m - R

(1) 1 (o
B- 4 -r B 0 A I2m l (Mx)

4r o-

- A()mx I' (mx) + (I ± 2m)t (mx)llcoer(2m ± 1)A-2masl. (3c)a 2m 2m

The coefficients A(0)  AM and C are given by the expressions

A( ° )  K' (mx)C , (4a)M 2m o a

4
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a( 1"1. r(mx ol ")o2- __- m o
0 2m ) 2  K2 0 Km±1 (mX)

+ (I ± 4m) wx K (Wxo)1 C (4b)
o2mt 1 0 a

2 sin 2mA (4)

m 2m65

The remaining parameters are defined as follows:

B- 8I (5)

cL

X0 2,o° , (6a)

Q0

x = 2ao , (6b)

2"w (7)

where I is the current flowing in the windings, 2o0 is the width of the

current carrying conductor, a is the radius and L is the period of the0 eo

windings, r is the major radius of the torus, Bex is the external
0 s

toroidal magnetic field and In (x) , Kn  x) , In (x) and Kn  x) are

the Bessel functions and their derivatives. In a toroidal device, the

period should satisfy the relation

2 r

L -N, (8)

where N is an integer. The zero order fields B'(0) B) and B are

the field components produced by the helical windings in a straight
qP(cylindrical) configuration 23 ,24 and the terms proportional t~o o 0/r°0 are

5
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the first order toroidal corrections. These corrections, as given in

Eqs. (3), have been obtained for the surface current density

_ Co 0  and J s "* 0 O, 0. ( 2v°o (o/ir) co 'o

The three magnetic field components for s - 0 are plotted in Figs.

3a and 3b for 6 - 0 and i - w/2 respectively. The various parameters

for these plots are listed in Table I. At A- 0, the radial component

of the field is-zero. The B component increases linearly with o near

the minor axis and considerably faster near the wires. The toroidal

correction at o - 0 is approximately -36 G. In the results shown in

Fig. 3, in addition to the toroidal field produced by the torsatron

windings, there is a - 6 kG field produced by a set of toroidal coils.

At o - 0, BS-. B ex+ B - - 6 + 2.5 " - 3.5 kG. It is apparent from; A o OB s  s 0

these results that the toroidal field B. does not vary as 1/r. The

reason is that B is a function of s or the toroidal angle. Figure 3c

gives the magnetic field lines in the r , z and o , s planes. Because

of the toroidal corrections, the magnetic axis does not coincide with

the minor axis of the torus, which is located at r - 100 cm. The

magnetic axis is always shifted toward the major axis of the torus,

because the field on the minor axis generated by the axial current

flowing on the section of the torus to the left of the major axis

reinforces the field generated by the axial current flowing in the

outside edge of the torus that is located to the right of the major

axis.

Equations (1) to (7) are used to compute the magnetic field

6
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components in the numerical integration of the orbit equations. It has

* tbeen determined that the first two non zero terms in the expansion are

sufficient to describe the field in the region o/a 4 0.5 with an

accuracy better than 95%.

* In the analytical work described in Section IV, the toroidal

corrections have been neglected as well as all the terms with

m ;2. Furthermore, it has been assumed that A<<1. Under these

* simplifications the torsatron magnetic field becomes

2B t2 (x) sin [2(A - as)], (9)

4 Bex
B x I (x) cos r 2 (6 - as) , (10)

x t

Bs  B -2Be I (x) cos [2(b - (s)], (11)0 s t 2

where Bex = B x K (xo)o 002 0

For x << 1, Eqs. (9),.(10) and (11) become

B ex

B" a 2 sin [2(S-ris)], (12)

B ex13
B6 a 2 cos [2(6-as)], (13)

B 3 B 0 (14)

In addition to the torsatron field, the rebatron accelerator

"Includes a betatron or vertical magnetic field and a toroidal

field, B , that is produced by a set of toroidal coils. The two

1-15
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components of the betatron field are described by the linearized

equations

Bz Bo [l-n x/ro] (15)z o 0

B - -B ny/r, (16)r zo 0

where Bzo is the betatron field at the reference orbit, i.e., at

x - y - 0 and n is the external field index.

The toroidal field produced by a set of toroidal coils is

independent of toroidal angle and therefore varies as 1/r. This

toroidal field can be chosen to have either the same or opposite

polarity to the torsatron toroidal field.

b. The Electric Field in the Gap

" Consider two cylinders with their axes lying along the same line

and separated by a distance d as shown in Fig. 4a. Since the cylinder

on the left is charged to - V0 and the cylinder to the right is charged

to + Vo the average electric field in the gap is <Es> - 2 Vo/d . The

local electric field is given by the solution of Laplace equation, i.e.,

2  0. For IsI ) d/2 , the exact components of the electric field

are:

4V - sinh(k d/2)j ( o) e- n sI
-,E O0 n o n (17)s d n-I XnaJ1 (%na )

4V - sinh (I d/2)J (1nO) e- n s)
- 0 ~.n 1 n()
.oV d n 1n

8
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Similarly, for Isl 4 d/2 , two components of the electric field

are:

4V (Jx o)e- Xn d/2cosh (x s)
E - d /2 ax J(X a) (19)

s n-1 l n

and

4V - l (X -X)nd/ 2 sinh (X s)
E: d n-1X aJ (X a) n (20)

where Jo(Xna) - 0, a is the radius of the cylinders and J and J are

the Bessel functions.

The electric field lines that correspond to the field components

given by Eqs. (17) to (20") are plotted in Fig. 4b. These electric

fields are a good representation of the fields produced inside the torus

by a transmission line, since in this region the inductive magnetic

field is zero and therefore the potential is described by 7 2 0.

III. Numerical Results

To investigate the confining properties of the torsatron magnetic

field, we have integrated the relativistic equations of motion using

Eqs. (1) to (7) for the torsatron magnetic field and Eqs. (15) and (16)

for the betatron field. The accelerating gap is 2 cm wide and as shown

in Fig. 5, the electric field is limited to a 0.60 radian wide toroidal

sector. For reasons that are discussed later on, the self fields have

been omitted in these runs.

In the first run, the current in the torsatron windings is chosen

9
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to be zero. Figure 6a shows the normalized particle energy (y) as a

function of time and Fig. 6b the projection of the particle orbit in the

transverse plane. The various parameters for this run are listed in

Table II. Since e is zero, the magnetic field configuration is that of

the modified betatron. As a consequence of the curvature drift, the

gyrating particle drifts out of the system in about 26 nsec, i.e., in

about a tevolution around the major axis. As expected, the guiding

center of the particle moves mainly in the vertical direction, while the

particle gyrates around its guiding center with a frequency

corresponding to the local toroidal field.

Figures 7a and 7b show the normalized energy of the particle and

its orbit when approximately -124.7 kA of current flows through the

torsatron windings. The rest of the parameters for this run are listed

in Table III. The particle remains confined for eight revolutions.

Figures 8a and 8b show similar results when the current in the windings

is increased to approximately -250 kA. The corresponding torsatron

field strength factor Et is -0.8. The remainder of the parameters are

listed in Table IV. In all three runs the betatron magnetic field was

held constant at 118 G. These results clearly demonstrate that the

confining properties of the system are substantially improved by the

addition of the torsatron field. The particle strikes the chamber wall

when its gamma approaches approximately 65. The total time the particle

remains in the system is about 320 nsec, i.e., more than an order of

magnitude longer than when the torsatron field is absent.

Further improvement in the particle confinement is observed when

the period of the windings is reduced or the current in the windings

increased. An additional modest improvement in the confinement of the

10
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system is observed when the betatron field is increased above its

* matching value. This is shown in Fig. 9. The betatron field for this

run is 236 G and the remainder of the parameters are identical to those

in Fig. 8. The confinement time increased by 20 nsec, i.e., from 320 to

340 nsec. However, when the betatron field increased to 472 G the

confinement time was reduced to 290 nsec.

IV. Theoretical Model

To gain a better understanding of the focusing properties of the

torsatron fields, we have developed a theoretical model that is based on

linear external fields. Obviously, these fields are appropriate only

near the minor axis of the torus, i.e., when 2ro << 1.

The components of the torsatron field in the coordinate system

e r , e., ez shown in Fig. 2 are

B - B cos - B -sin' - B r a + (r-r ) sin 2ar 0' (21)

Bsinb + B cos'h B:x.t r(r-r )cos2ar 0 - z sin2ir 0A" (22)

Bit - B , (23)

where - r s.0

In addition, the betatron magnetic field is given by

n(r-r )
B B r 1... o0 (24)

zo r
0

1-11
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and

. B =-nB z/r, (25)
rbzo o

where n is the external field index. The total field components are

B =B + Bb, (26)r rt b

B - Bzt + Bzb, (27)

Ba  3 B- x, (28)
B4 Bet Bs (8

where B.x indicates any additional toroidal field that may be applied.

The accelerating electric field components. are approximated by

(r-r) 2 r
E 2r '  -; 1, (29)
r 2

0V
2 rq

z "r, m 2  r° (30)Ez 2r 20 v

E$ 4 mc 2 yo (31)ev%

2 2
where y = dy/dt , y = d y/dt and v is the toroidal velocity, which is

assumed constant.

Using Eqs. (26) to (31) for the fields, the equations of motion in

the laboratory frame become

, 2 R + - w-- rRcosw t- Zsinwt - - --- 2(t) (32)

12
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SW2 Z o w rZ cosw t + Rsinw t) + (R "Z R) -= 0 , (33)
z 2 w w 2- Y

where

* 1/'2 (r-r ), z -Y 2z
0

"eB/mc , . =eB /mc,zo zo

- ,ex _/ - 2t v

xt) 0 c2 /2 v v. r0 1 ZO
r 0 c c c-,0

-/,, r 2 Vy + 0  2

R" t Y Y Y 22 Y ro 2"

0

and

2 2n~~~ 1/v' Ii -__ n

*z y Y Y 2v2  yro

Equations (32) and (33) become more tractable when transformed to a

frame rotating with angular frequency w /2 • Using the transformation

R"- R cos ( -'-) + Z sin r V (3)
2 2 '

Z "- sin r-- W + Cos w ](5
2 2

equations (32) and (33) become

13
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2_ 2 1 0( w w W W e

w 2 2 2 y

Y2 .2 W

2Y

2 r22 2 Z w '"2, rW + AW Cos W t  r+ w) 1
w2 2 2

.y ,,. '-+ j sin, t) X2sin r w (37)
w Y 2y y 2 '

where

,2 1/4 ( 2 2 + .Y r c2  + v. 14rL) 2 + v 4-
4 y 2 2v 2 2r2  4 2r2

0 o

and

2 v., n o U4

r y 2nr
o 0

Since at the start of the acceleration 1 WOw /2 I>> A,,2 and

(;2-) ( ( -) , the two coupled equations (36) and (37) can

be combined into a single equation by introducing the complex variable

I, .R + i Z . Multiplying Eq. (37) by i and adding it to Eq. ('36), it

is obtained

• " 2 i w t / 2
+ f~ + f3  i f2  X e W(38)

where

14
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p.

[.W 2 ~ w Ww 0 0)
f ,2 - w -2 w i f2 and
[ 2 + 2 y 2Y y '2 " w y

p.f 0 OW
3 2

Equations (36) and (37) have been solved numerically. After integration

the orbit is transferred back to the laboratory frame. The results are

shown in Fig. 10. The projection of the orbit in the r,z plane is shown

in Fig. 10a, .the particle radial distance from the minor axis as a

function of time is shown in Fig. 10b and y as a function of time in

Fig. 1Oc. The various parameters for this run are identical to thoseV

listed in Table IV. The particle strikes the wall at about 325 nsec,

when its gamma is approximately 68. These results are in good agreement

with those of Fig. 8 that have been obtained using the more accurate

expressions for the torsatron fields. As will be discussed later, the

particle was lost because at y - 65 it entered the unstable region that

extends from y 65 to y - 121

When y = 0 , the homogeneous part of Eq. (38) becomes

2- 2 _f2 0,(9(2f1 + f2 2 + [f 1 - f1] -0, (39)

i.e., a fourth order equation with constant coefficients. The solutions

i(Ot 2
of Eq. (39) are of the type ib 0', e , where w. , is given by

2 ex 22 ~, w 2- . r. 2w +, .2 2- )
+ I/4( w - + -- w t 0 (40)

* - 4y2

15
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when Iwj<< o /21

The particle orbits are stable when w is real, i.e., when

U() -.ro ne2> 0. (41)
2 t s

The two roots of (40) are given by

± r s s (42)
w

The function u(y) is plotted in Fig. 11 for three values of B. and

B e In Fig. Ila B e -6kG, B - 5KG and thus B - -(B ex + BO) IKG.S s 0 s

For this value of toroidal magnetic field and for et M 0.4 and

9 , -82fr1h w roso
w /2 - 3x10 sec, Eq. (42) gives 19.96 and -8.2 for the two roots of

Eq.. (41). Therefore, at Y - 7 the particle orbit should be unstable.

Results from the numerical integration of nonlinear orbit equations for

Y 0 , and Y - 7 and using the same values for the rest of the

parameters as in Fig Ila are shown in Fig. 12. As expected, the orbit

is indeed unstable and the particle is lost in less than one nsec.

By reversing the direction of the current in the torsatron wires

B and e change sign and the two roots of Eq. (41) become 50.5 and
0

78.7. Therefore, for y - 7 the orbit is stable. This is in agreement

with the results from the numerical integration of nonlinear orbit

equations shown in Fig. 13.

When + , the orbits are stable for all values of Y • For

16
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Bs e 6KG , B = 5KG and s = -0.4 the two roots of Eq. (41) are

-50.5 and -78.7. For this case the orbits were found stable for all the

values of Y considered.

The numerical and theoretical results are in excellent agreement

ex
when the linearized theoretical model is valid. However, when B ands

B have opposite signs and IBsexi > JBoJ , the toroidal field vanishes

* at some radial distance and the field lines form magnetic cusps. In

this case the linear theory does not properly describe the fields and

the predictions of the theory are not in agreement with the numerical

results.

When

r 2 2 0 . 2 -. 
2

o w w Y 2Y

Equation (40) gives

2

r/2 2 o , (slow mode)
w~~~ 0;/-y)(!O/Y

2

2 o2 2 2
- w __ _- e o w4 2 w - 0 (fast mode)

yw Y 4(,,w / I

wY

17
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L-1

In the laboratory frame the slow mode 1 becomes

+

2

- w 0 (43)i + + 2 -- o 43

4(1 - -
'YWw Y

The particular solution of Eq. (38) in the rotating frame,

for Y - 0 and 1,L small, is 9 + p

where

4 X2(w '2/' + w0 /2) W t

0 w

and

w o
" z - 2sin (45)Sp 2- 2

o w

Transforming back to the laboratory frame using the transformation

L- -i ,u t/2

e . ,we find that the particle orbit is displaced along the

horizontal axis by

r 2 2 (1 - /YWw) (46)

0

Figure 14 shows the projection of the particle orbit in the

tranverse plane for

, S't "-0.4- B4 IIKG , ,w = 6 x 10 sec -
, ro 100cm,

Bzo 118 G and u,, c. For these parameters Eq. (43) gives a slow

18
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p.

period r+ 21Tn+ -62 nsec. For the same parameters the code gives

T+ - 60nsec.

In addition, Eq. (46) gives a displacement Ar - 1.74 cm , which is

identical to the orbit displacement of Fig. 14.

Let's now return to discuss briefly the results of Fig. 10. For

the parameters of the run, Eq. (42) gives y+ - 121 and Y_ - 65 . When

the Y of the particle reaches 65 i.e., at about 300 nsec, it becomes

* unstable and strikes the wall in one revolution.

In addition, at t-0 the ratio o/ wY - 6.67 and according to Eq.

(46) the orbit displacement is negative. As y increases 1 /-(,a is

reduced and when OA/Y w < 1 the orbit dispacement becomes positive. At

Y - 46.6 , 14/y w  I and Ar - 0 . According to Fig. 10b this occurs

.at t a 210 nsec , which corresponds to Y 47 (see Fig. 10c).

V

V. Self Fields

* An accurate self consistent determination of self fields of a high

current electron ring confined in a rebatron is difficult, because the

minor cross section of the ring has, in general, a complex shape that

varies along the toroidal direction.

Since we are interested in the macroscopic motion of the ring and

therefore on the self fields that act on the ring centroid, we assume

that the ring has a circular cross section and its particle density is

uniform. Neglecting toroidal corrections, the fields at the center of

the beam, which is located at the distance (r- r ) and z from the

minor axis are18'
26

19

1-27

• .- , . . . . . . . . -, .* . . . . . . . .- • • _ , .



r2r (r rs b 0 e -(7
E r 21oe Oo a2  r o (7

a o

2
E:-2w~1 r rb (48

E -21rjej nor °  - - , (48)
z ra 0

2
3 2rb (Br 2 elln° °r° r2 , (49)

a 0

and

r (r- r (
BZ 2wreln Q r rb o- (50)o 2 r

a o

where n is the particle density, rb the beam radius and a the minor

radius of the perfectly conducting torus.

When Y 0 0, n -/2 and the- beam energy is matched to the vertical

field, the equation describing the beam centroid motion in the tranverse

rotating plane is given by

* 2 iwt/2
- if (51)

where f2 and f3 have been defined under Eq. (38) and

2 3 
'

mW w 2- + , (52)12 2 Y

where 22 2
2 rb(a)2  (53)

23 aS 2 r20 2-f

2 2r
ad 2 4we2n /and w b 4 om n/

20
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The solution of Eq. (51) when X 0 is D = oi e

where

2 w 2 + 2U1 + + W
±' w Y 4Y2

' ±02 2 2 1/2
r , . 2 1 2 + o ) W "  (54)W 4Y2 + l 4

The orbits are stable provided

O M2

+ )0 (55)
•)r.. 4y2 '

and

2 2
^ 2 Ww 2 W____2 or - .w + ,0 w 0 (56)

- 2 y 4

Equation (56) can be written as

2 ) ) 21 2r(q 2W

W1 + 2L ((---2 + -Y )2 0 (57)

and its roots are given by

-2

firw /2) o) U)

When ' --- )I ) IWo 1 , the two roots of inequality (57) are both

either positive or negative depending upon the sign of

._) and A • The results are summarized in Table V.
Y 2 0

For Y>>, Eq. (58) becomes

-2 )2
W,.+ = (w w/2) (59)

21
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i.e. the orbits are always stable provided inequality (55) is satisfied.

The maximum amount of space charge that can be confined by a

rebatron can be determined from Eq. (55). When

2
2 2 2< rb 2
u /2r2 (-)0 3 a

Eq. (55) gives

a _ . (60)

8c
2

For a - 10 cm, B- 10 KG, y " 7, Eq. (60) gives v - 3,000 or I 50 MA.

^2
When the .current of the beam is large, w1. <<0. However, as

'2 2 2
y increases w I approaches it asymptotic value u /2r2 . Similarly, the

two roots L approach their asymptotic value given by Eq. (59).

Figure 15 shows the stability diagram at t - 0, when w) < 0' 7 2

and w < 0. For this case the stability condition0

is- r - -) 1 + 0 wt > -

J 2 Y 2 2 4Y2

2 n 2 '2

During acceleration y increases and therefore both -P /4-y and m move

to the right of the diagram. Therefore, it may be argued that

'2 2 2
- before w- crosses the vertical axis, -q /y 2 catches up with it and the

"2
ring becomes unstable. A similar situation would occurs when w becomes

-2
equal to , . However, we have shown that when the system is stable at

t -0 it will remain stable for any y that exceeds the initial y

22
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* VI. Conclusions

" We have carried out an extensive numerical and analytical

investigation of the beam dynamics in a rebatron accelerator. Although

the analytical work is based on simple, linear approximations for the

various fields, the two approaches give very similar results when these

approximations are valid.

Our studies indicate that when self field effects can be ignored,

* the particle normalized energy can be increased from y - 7 to y - 70, at

constant betatron field, before confinement is lost. This implies that

the device has a bandwidth that approaches 1000%. This bandwidth can be

4further increased by increasing the current in the torsatron wires.

Even in the absence of the space charge, there is a range of

parameters [see Eq. (42)] for which the rebatron is unstable. However,

this orbit instability can be easily avoided by a judicious choice of

the various paramecers.

As far as orbit stability is concerned, the maximum electron beam

current that can be confined in a rebatron accelerator is given by Eq.

(60) and is impressively high. Therefore, it is expected that the

limiting beam current in a rebatron would be determined from collective

instabilities and not from the macroscopic stability of beam orbits.

Although the bandwidth of rebatron accelerators is very high, the

maximum energy that can be obtained by these devices, with time

independent magnetic fields, is rather limited. To achieve very high

energies (y > 1000) the betatron magnetic field should be replaced by a

local vertical magnetic field that varies rapidly with time and

approximately in synchronism with the beam energy. Such a fast vertical

field can be generated by two coaxial, cylindrical lines that carry

23
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current in the opposite direction. The axes of these lines coincide

with the major axis of the toroidal vessel and they are located

symmetrically around the minor axis of the torus. These transmission

lines change mainly the local vertical magnetic field, while the

magnetic flux through the beam orbit remains approximately constant.

The mismatch between the beam energy and the vertical field is

alleviated by the strong focusing field. The effect of the rapidly

varying vertical magnetic field on the beam dynamics will be reported in

a forthcoming publication.

S. 24
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Table I.

Parameters of the run shown in Fig. 6

Torus Major Radius ro(cm) a 100

Winding Minor Radius 0 (cm) a 12

Toroidal Chamber Minor Radius a(cm) a 10

a - 2w/L (cm-1 ) a 0.1

Field Strength Factor S-t 0

Winding Current I (kA) 0

= 2

exAdditional Toroidal Field B5 (kG) = -6

Betatron Field B (G) - 118

Ext. Field Index n = 0.5

Initial y - 7.0

Initial Positions o - - s = 0

Initial Velocities v = v = 0 vs  c

26
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-4

Table I

.4

Parameters relevant to the torsatron fields shown in Fig. 3. Only two

terms retained in the series of Eqs. (1) to (3).

Torus major radius r (cm) - 100

0

• ''Windings minor radius o(cm) - 12

j--

Toroidal chamber minor radius a (cm) = 10

- 21r/L (cm- 1) - 0.1

Field Strength Factor S- 0.2

Winding Current I(kA) - 62.37

z - 2

Additional Toroidal Field Bex (kG) - - 6
s

25

1-34Ii
!

. '.- •, ' ,° . . 44.'. .' .' *-.'- -. , " '"" . . ." . ." ,"' . " ."-. "~~~ * *""' ," * *4 " ", - "" "- '



Table IV

* Parameters of the run shown in Fig. 8.

Torus Major Radius re(cm) - 100

Winding Minor Radius a (cm) = 12
0

Torodial Chamber Minor Radius a(cm) - 10

a 2i/L (cm- ) 0.1

Field Strength Factor s - -0.8

Winding Current I (kA) -'-250

-2

Additional Torodial Field Be (kG) = -6

Betatron Field B (G) " 118

Ext. Field Index n = 0.5

Initial y - 7.0

Initial Positions o =  - s = 0

Initial Velocities v - v6 0 , v - c

i '

,..9
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Table III

Parameters of the run shown in Fig. 7.

Torus Major Radius r (cm) 1 100
0

Winding Minor Radius o0 (cm) - 12

Toroidal Chamber Minor Radius a(cm) = 10

a 2w/L (cm ) 0.1

Field Strength Factor s - -'0.4

Winding Current I (kA) -124.7

-2

Additional Toroidal Field Bex (kG) = - 6
s

Betatron Field Bz (G) = 118

Ext. Field Index n - 0.5

Initial - = 7.0

Initial Positions 0 =  
- s 0

Initial Velocities v -v - 0 ,v c

0 S

27

1-36



C

uC 4-. 7
00

0 U
>C

x C1 U

*<

cac

E

1-37



Table V

Roots of inequality (57) as given by Eq. (58), wnen

n A

2t"Y 2") w 0 2,, .+l/w

+ + both negative

both positive

+ both positive

+ both negative
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1.0 -400

0.5
"-~ -ieOo

0

-2600-

-0.59

-1.0. -60
0 9 I0 -0 10p (cm) p (Cm)

_.Toroidal Correction

Torsatron Field Components
-600 s 0

-1600-

-2200 a

0 3 to
p (cm)

(a)

Fig. 3 - Torsatron magnetic field components (a) at * , s - 0 and (b) at s - 0, 6 - w/2. In
addition to the torsatron field there is toroidal field B," -6 kG that is produced by a set of toroidal
coils. (c) magnetic field lines in r, z and p, s planes.
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Pololdal Streamn Lnes of 8 Field
I0

* Stream Lines of 8 Down The Tube

OF E

-20 15 30 46 ;0

S (CM)

r (cm)
(c)

*Fig. 3 (Cont'd) - Torsatran magnetic field components (a) at (6 - s -0 and (b) at s -0, v~-f12.
In addition to the torsatron field there is toroidal field B," - -6 kG that is produced by a set of
toroidal coils. (c) magnetic field lines in r, z and p, s planes.
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35 -3500

44
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-~ -3800-

0 ,
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Fig. 3 (Cont'd) - Torsatron magnetic field components (a) at b - s 0 and (b) at s - 0, 6 - v/2.
In addition to the torsatron field there is toroidal field 8 - -6 kG that is produced by a set of
toroidal coils. (c) magnetic field lines in r, z and p, s planes.
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Fi$. 7 - (a) y of particle as a function of time and (b) particle orbit in the r, z plane for moderate
(4, --0.4) torsatron field. The various parameters for this run are listed in Table I1.
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• .Fig. 6 - (a) y of particle as a function of time and (b) particle orbit in the r, z plane in the absence
- ) of torsatron field. The various parameters for this run are listed in Table I.
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Fig. 9 - (a) y of particle as a function of time and (b) particle orbit in the r, z plane for

the same parameters as Figure 8 except at a higher betatron field.
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Fig. 8 - (a) yof particle as a function of time and (b) particle orbit in the r, z plane for high

(a -0.8) torsatron field. The various parameters for this run are listed in Table IV.
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Particle Orbit in The Transverse Plane
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Fig. 10 -(a) Particle orbit in the r, z plane; (b) particle radius ais a function of time and (c) yof
particle as a function of time. These results have been obtained from the linear equations (36) and
(37). The results shown are in the Lab. frame. The various parameters for this run are the same with
those of Figure 8.
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Fig. 10 (Cont'd) - (a) Particle orbit in the r, z plane; (b) particle radius as a function of time and (c)
y of particle as a function of time. These results have been obtained from the linear equations (36) and
(37). The results shown are in the Lab. frame. The various parameters for this run are the same with
those of Figure 8.
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Fig. 12 - Particle orbit in the r, z plane for the same parameters

- r as those in Figure 1Ila.
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* Excitation of the plasma waves in the laser beat wave accelerator
C. M. Tang and P. Sprangle
PNma Tkwy Bronc. Plasma ftscs Diviin Naval Research Labrwatory WaAsigon. 1.C 20375

R. N. Sudan
qLbwasmyfow Pfmw .bdm Conel Unimpsay Ithaca. New York 14853 IS BLANKGE

(Received 5 March 1984; accepted for publication 30 May 1984)
The excitation of plasma waves by two laser beams, whose frequency diffenece is approximately
the plasma frequency, is analyzed. Our nonlinear analysis is fully relativistic and includes
mismatching of the laser beat frequency to the plasma frequency, time dependent laser
amplitudes, and an applied transverse magnetic field (surfatron). For a given beat frequency, laer
power, and plasma density, we find the peak accelerating electric field and its phase velocity. The
transverse magnetic field is found to increase the effective plasma frequency, but has little effect
on the plasma dynamics.

The laser beat wave accelerator concept is a promising f which is represented by the vector potential
O colective acceleration scheme which utilizes a large ampli- A, = Bot,. In this configuratiom, the electric field of the

tude plasma wave generated by the nonlinear coupling of lasers is parallel to the imposed transverse magnetic field,
two intense laser beams to accelerate electrons. '-7 We ana- EL IIBO.
lyzed the formation and saturation of the plasma waves by In our one-dimensional model, the tranverse electron
two laser beams, whose frequencies are separated by approx- dynamics possess two constants of motion, i.e.,
imately the plasma frequency. - Ieic-'(AL + Ao) + p - constant. Assuming that p - 0

Our model consists of a spatially one-dimensional plas- prior to the arrival of the laser pulses, it follows that the
* ma containing infinitely massive ions. Initially the plasma is electron's transverse momentum is given by p,

assumed to be cold, uniform in density, and stationary. The = eic-AL -k, andp, - IeIc-'Bo(Z -' 0 ), where Zo is the
temporal evolution of the plasma wave over a single spatial initial axial position of the electron.
period is studied at a fixed axial position. This analysis treats It proves convenient to transform to Langrangian var-
the following topics: (1) nonlinear behavior of plasma waves, iables," such that t ,, andz = zo+ t (z0,T), wherezo and r
(2) relativistic effects, (3) effect of finite duration laser pulses, are the new independent variables, and g (zor is the axial
(4) mismatching of the laser beat frequency to the plasma displacement at time r relative to the electron's initial posi-
frequency, and (5) the effect of an applied transverse magnet- tion zo. Using Lagrangian variables, the axial electric field
ic field (surfatron)' takes on a simple form, E,(zor) = 4r ejnC (zor).

The vector potential associated with the linearly polar. We normalize the parameters in the following manner,
ized laser pulses within the plasma is T = A, Z, = 4kzo, E = (Ak/awXle /moE, = ,k" is the

normalized electric field amplitude,f= Aw1/w, is the fre
SAL (z, t) = , Z -L',t)cs(kz-W, I + 01R., quency mismatch parameter, and G= (17 2/?o a'/yo)-1

is the transverse magnetic field parameter, where
where w, >o , W, is the laser frequency, ya,

= (4rletl2no/mo)'/2 is the ambient plasma frequency, no is I* 1
the ambient electron density, and - (ci, -- 2 )/(k, -k)is a, = IeIA,/mo, a] =1/

the group velocity. In our model, we assume k, to be con- is the effective plasma frequency, = lelBo/moc,
stant andA, specified, i.e., the imposed laser fields areas- Ak=k, -kland Ao,-w - W2 is the lar beat wave fre-
sumed unaffected by the plasma density fluctuations. This is quency.
a good approximation.if a, > c ,, eA, 1/(moc 2) < 1, and 6nl Using the axial component of the Iorentz force equa-
no < 1, where 6n is the plasma density fluctuation. Also in- tion, the evolution of the plasma oscillation is found to be
cluded in our model is an applied transverse static magnetic given by

- - 2(1 - 6 (ala-°E) ((as+a a° Ba)aa a2(U)-a'a n o (1)
(I Is,-E) Lid (a +~o4)4)

where

-(I s(+~. #f G oE2+(a1 +a2)+aia2 CoS4A )
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FIG. i. Normalized amplitude of the accelerating electrc field E as a frosc- 0.8
to of number oflase bat wave periods obtained with the fully relativistic 0.8 0.9 1.0 I

equations for laser powes built up over three la r beat wave periodL Normalized Loser Beat Frequency (f)

F1G. 3. PlOts o(the phase velocity associated with the peak electric field for

4*=E- T+Zo+4, Ek=aE(Zo, T)/OT, 0.01 o.04, and0.6.

a = Zo + E- T, and , = 4/c~k. Our model is valid p- compared to the plasma oscillation period. Furthermore, we
or to electron trapping, i.e., trajectory crossing, which oc- assume that W 10 2 - w,, AwIcAkn 1, and I > AE > e.
curs when the amplitude IE I is approximately unity. With these assumptions, we obtain

The equation of motion described by Eq. (1) is fully rela-
tivistic in both the axial and transverse directions. Equation d4E/dT= (E/4)sin e, (4)
(1) permits us to analyze the plasma dynamics for laser pulses dO/dT - (4f 2) - (f 2 _ I + 94E 2/16), (5)
having a beat frequency approximately equal to the plasna where the initial conditions are AE = 0 and e = ir/2. A con-
frequency. By varying the parameter associated with the stant ofmotion associated with Eqs. (4) and (5) is
transverse magnetic field G, we can also model the surfatron AE [4E 3 + V(f2  _ l)dE+ jif 2 e COSe C, (6)
configuration.

Using Eq. (1), analytical results in the saturated regime where C - 0 since initially AE = 0.
for weak laser fields, i.e., mildly relativistic electron motion, We obtain analytical results for AE and for 8 in the
can be obtained. First, we consider the case where the two saturated regimes by solving Eq. (6). The maximum AE at
laer powers are constant in time and define the laser power saturation occurs at cos 8= - 1, giving
paamete AE., = 4(E/3)13 , (7)

e=aa 2/l +(e, +az)/2]. (2) and the maximum field in cp units is

Assuming E to be a slowly varying function oftime, it can be , = / ,/fXmoc/leIXe/3)"

represented in the form As the laser power is increased, relativistic effects on
E(Zo, T) =AE(T)sin(Zo- T+ O(T) +A4], (3) the electron motion become significant. These relativistic ef-

fects cause the accelerating field to maximize at a laser beatwhere AE (T) and 6(T) are slowly varying functions of time frequency which is less than the effective plasma frequency,

f 1 - 2'(9e/$) 1'. (8)

-Anaytical

I 6.0. -
1.0.0 E o)1

Ii.C

, -. IIII/

" - 0a5

0 1 0 0 o 40

0'". .0l 09 I0 1.I Number Of Loser Seat Wavt Periost

.- %., Nrmslxe Loer Bol recueny (f )FIG. 4. Temporal evolution ofthe amplitude stfthe normalized electric field
;. 'FIG. 2. Normalized peak amplitude of the accelerating electric field for E and the phas velocity u.,/l, produced by puhlse law beam eat a nor-.0.01, 0.04, nd 0.16. mized frequencyf- 0.925.
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During the acceleration process the injected electrons the phase velocities are not desirable for accelerating elec.
must be nearly synchronized with the phase velocity of the trons. Thus, the laser pulse duration should be chosen to
plasma wave. To obtain the phase velocity v,, we follow a equal the plasma build up time. After the laser pulses pass
null of the electric field and find that through the plasma, the plasma wave will continue to oscil-

g = c6,(I - dO/dT). (9) late until disrupted by various instabilities.' Figure 4 shows
the temporal profiles of the normalized stimulated electric

The phase velocity of the plasma wave at the maximum elec- field amplitude, a short laser beat wave pulse e, and the cor-
tric field amplitude is at a local minimum and given by responding phase velocity v,, Iv at the normalized frequen.

UP,.. = €.,(l - 1.89e21 ). (10) cyf =0.925.
Figure I shows the amplitude of E as a function of time For the purpose of accelerating electrons, it is desirable

obtained from Eq. (1), with e = 0.01, G = 0, and three differ- to have large accelerating electric fields with a phase velocity

* ent beat frequencies: f= 0.96, 0.98, and 1.0. In Fig. 1 the Vh very close to c. As the laser power increases, we find that

laser power was increased gradually over three periods of the as the maximum amplitude of the plasma wave increases

laser beat frequency. In this case the amplitudes of the elec- (scaling as e'/3), and the corresponding phase velocity de-

tric fields are almost identical to those obtained using Eqs. (4) creases (v, - UP. scales as e'2 3). The final electron energy is

and (5). limited by desynchronization of the accelerated electrons

Plots of the normalized peak amplitudes of the acceler- and the plasma wave. An imposed transverse magnetic field"

* ating electric field for e = 0.01, 0.04, and 0.16 in the frequen- can increase the total kinetic energy by maintaining synchro-

cy range 0.8 <f< 1.1 is given in Fig. 2. The phase velocities nism while accelerating the electron in the transverse direc-

associated with the peak amplitudes are plotted in Fig. 3. tion. The imposed transverse magnetic field increases the

The dashed curves are the numerical results obtained from effective plasma frequency, but has little effect on the dy-

Eq. (1), while the solid curves are the analytical results ob- namics of the plasma wave.

tained from solving the cubic polynomial in AE, Eq. (6). We We have enjoyed stimulating discussions with 1. B.

note that both the amplitudes and phase velocities undergo Bernstein. This work is sponsored by DOE, under Contract

discontinuities atfo,. Forf>f.,, ,dE has one real root and No. DE-AIOS-83ER40117.

the phase velocity associated with the peak electric field is
less than the speed of light. Forf<f , AE has three real 'T. TajimiaandJ. M. Dawson IEETrans NulSci. NS-2, 3416 (1981).
roots and the root closest to the numerical result is the small- 2LawrAmekratiof Parnde. edited by Paul J. ChanneU (ALP, New York.rr i1982, AIP Conf. Proc. No. 91.
est. The phase velocity associated with the peak electric field 3J. D. Lawson, Rutherford Appleton Laboratory. Report No. RL-83-0S7,
is generally greater than the speed of light. 1983.

In the region. marked by = ) in Fig. 2, the large 'D.J.Sed-1114.B.Go ,inT C lJengeofUEn'eHigh Enepe.
amplitude plasma oscillations cause the electrons to become dited by J. Mulvey (ECFA 33/68, Rutherford Appleton Laboratory, Ox.

ford, United Kindom. 1983), p. 209.
highly relativistic and the electric field steepens until wave 'R. J. Noble. Preented at Proceedinp of the 12th International Conference
breaking.4.s.1.9 Since the electric field produced by turbulent on High Enerly Accelerator. Fermi National Laboratory, 1983.
plasma is unlikely to be desirable for acceleration, the upper OR. Bingham (private communication, 1983).
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Dynamics of space-charge waves in the laser beat wave accelerator
C. M. Tang and P. Sprangle
Plasma Theory Branch. Plasma Physics Division. U. & NaualResearch Laboratory. Washington. D. C. 20375.
5000

R.N. Sudan
Laboratoryfor Plasma Studies, Cornell University, Ithaca, New York 14853

(Received 7 June 1984; accepted 17 January 1985)

The excitation of plasma waves by two laser beams, whose frequency difference is approximately
the plasma frequency, is analyzed. Our nonlinear analysis is fully relativistic in the axial and
transverse directions and includes mismatching of the laser beat frequency to the plasma
frequency, time dependent laser amplitudes, and an applied transverse magnetic field (surfarron
configuration). Our analytical results for the large amplitude plasma waves include an axial
constant of motion, accelerating electric field, and its phase velocity. The analytical results in the
weak laser power limit are in good agreement with numerical results obtained from the complete
equations. The imposed transverse magnetic field is found to increase the effective plasma
frequency, but has little effect on the plasma dynamics.

I. INTRODUCTION vantage of the fact that the index of refraction of a neutral
gas is slightly greater than unity. The laser radiation within

The laser beat wave accelerator is one of a number of the gas has a phase velocity less than the speed of light rnk-
laser driven particle accelerating schemes, ' which is cur. ing it possible to trap and accelerate an injected beam cf
rently receiving considerable attention. Existing types of particles.
synchrotron and linear accelerators are nearing their eco. In the cyclotron resonance accelerator mechanism 9 

0

nomic limits in going much beyond a few TeV in energies. an electron beam is injected along a uniform magnetic fid
Th availability of high power laser beams (> 10 4 W) with together with a parallel propagating laser beam. Because of 3

"P electric fields as high as 10" V/cm brings about the possibil- self-resonance effect, the phase of the electron's transverse
ity of using these higl fields to accelerate particles. Direct velocity can be synchronized with the radiation electric fie!d.
use of these fields for continuous particle acceleration is not This synchronism is maintained throughout the acceieration
possible because of the transverse polarization and rapid os- length.
cillation of the fields. A number of laser driven acceleration The high gradient short wavelength structure concepit'
schemes have been suggested over the past two dozen years. is basically a scaled down version of a conventional slow

* Before describing the laser b.-at wave accelerator con- wave accelerator structure. Radiation power sources in the
cept, a brief description of some of the other generic laser centimeter wavelength range appear appropriate for his ap-
acceleration concepts is mentioned. These include the in- proach. The potential advantage of this scheme is that be-
verse free-electron laser accelerator, the grating accelerator, cause of the short wavelength employed, relatively low radi-
the inverse Cerenkov accelerator, the cyclotron resonance ation energy per unit length is needed to fill the small
accelerator, and the use of high gradient short wavelength structure, and breakdown field limits appear to be higher.
structures. The laser beat wave accelerator concept is a collective

In the inverse free-electron laser accelerator scheme,3- 3 acceleration scheme which utilizes a large amplitude plasma
an electron beam together with an intense laser pulse is pro- wave with phase velocity slightly less than the velocity of
pagated through a spatially periodic magnetic field known as light to accelerate charged particles. The large amplitude
a wiggler field. The wiggler period and laser wavelength are plasma wave is generated by the nonlinear coupling of two
such that the transverse particle velocity caused by the intense laser beams propagating through the plasma. ...
wiggler field is in phase with the transverse electric field of In this process the two laser beams with frequencies ,, a.
the laser radiation. By appropriately contouring both the and corresponding wavenumbers k, k, couple through the
wiggler amplitude and period, the injected particles can be plasma to produce a ponderomotive wave with frequency
continually accelerated. The inverse of this process has been w, - a 2 and wavenumber k, - k,. See Fig. 1. If aI - a:
used to generate radiation and is the well-known free-elec- =w,, the plasma wave will initially grow lin=rly in time. If
tron laser mechanism. the laser frequencies are much greater than the ambient p ls-

The grating accelerator mechanism" relies on the fact ma frequency a,, then the phase velocity of the pondteromo-
that when electromagnetic radiation propagates along a dif- tive wave is nearly equal to the group velocity of the laser
fraction grating a slow electroma:;netic surface wave is excit- wave. In this scheme a beam of injected e!ectrons wit h axial
ed along the grating's surface. This scheme utilizes the slow, velocity close to the plasma wave phase velocity can be accel-
phase velocity less than the speed-of-light, electromagnetic erated until synchronism is lost.
wave to trap and accelerate a beam of injected electrons. A potentially attractive variation of the plasma beat

The inverse Ccrenkov acceleritor'" approach takes ad- wave acceleracor is !he ,irf-tron [nle. surtron
K-3
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Schematic Of Plasma Beat Wave Acceleratar In Sec. IV we obtained numerical results frorm the full

.. , €- " ' - "'-= " - thc weak laser powr lira. :L r;ui, ,ic n cckt ar -
aosmo ment. We observe the wave steepening phenomenon caused

I- E'c Eeiro y by relativistic effects. As the laser power increases, the waves
Low E€rqys Jeventually break and become turbulent. We show that for

laser pulse lengths much longer than the plasma wave build-
T T t T TT.oT ^ up time, the amplitude and the phase velocity of the plasma

l"ed -s M Fldwaves are oscillatory. By applying lasers with pulse lengths
approximately equal to the plasma wave buildup rime. both

FIG. 1. The schematic oaelectron acccleration by plasma waves excited by the amplitude and phase velocity can be approximately
two laserswith a beat frequency approximately equal tothe plasma frequen- maintained at a constant value.
cy.

configuration a transverse magnetic field is externally ap- II. PLASMA BEAT WAVE ACCELERATOR
plied permitting theaccelerated particles to effectively EXB
drift in a direction transverse to the laser propagation direc- Our model consists of a spatially one-dimensional plas-
tion. In this configuration the electrons can remain in phase ma containing infinitely massive ions. Initially the plasma is

tio. I ths cnfiuraionth elctrns an eman i phse assumed to be cold, uniform in density, and stationary.
with the plasma wave allowing, in principle, higher electron arge tue pld.maiwaves aeecity the poio-
energies to be achieved. Large amplitude plasma waves are excited by the pondero-

In this paper we analyze the buildup of the plasma motive force associated with the two laser pulses. Using a
wnsh Lagrangian formulation, the temporal evolution of the plas-
wma wave over a single spatial period is studied at a fixed axial
Our nonlinear, fully relativistic treatment of the plasma
wave includes mismatching of the laser beat frequencies to position.

magnetic field a This analysis treats the following topics: (1) nonlinearthe plasma frequency, applied transverse beavorofpasaeavs,()celtiitieeletsd) facto
well as time-dependent laser pulses. The resultant equations behavior of plasma waves, (2) relativistic effiets, 3l efec of

in Sec. II describe the growth of the excited plasma waves up finite duration, laser pulses, 4) mismatching of the laser beat

until saturation. We find that the effective plasma frequency frequency to the plasma frequency, and (5} the effect of an

is increased from the ambient plasma frequency when a applied transverse magnetic field.
transverse magnetic field is applied. On the other hand, the A. Nonlinear, relativistic plasma dynamics
effective plasma frequency can be decreased as the trans-
verse motion, induced bjintense laser powers, becomes rela- The vector potential associated with the linearly polar-
tivistic. ized laser pulses within the plasma is

Making the weak laser power approximation in Sec. III.
we obtain analytical results for the initial growth rate for the AL (z,t) - .4,(Z u t cos(kz - , ,, , I=1.2

large-amplitude plasma wave, the maximum accelerating
electric field, the laser beat frequency requirement, and the where A,(z - v. (denotes the pulse amplitude of the ith !a-

corresponding phase velocity. As the combined laser powers ser, a >w,, w, is the laser frequency, w, = 14- , ,,, . 2

(measured by e) increase, the maximum amplitude of the is the ambient plasma frequency, n,, is the ambient cectron

plasma electric field increases as ae" . The variable a is a density, and v, = (w1 - w4/(k, - k,) is the group velocity
function of frequency mismatch between the laser beat fre- of the laser radiation. In our model we assume k, to be con-

quency and the effective plasma frequency. The relativistic stant and A, specified, i.e.. the imposed laser fields are as-

effect associated with the transverse motion is incorporated sumed to be unaffected by the plasma density modulations.

in the parametere. In the limit of exact resonance and nonre- This isa good approximation ifa, d, meiA,/dmci < and
lativistic motion in the transverse direction, we confirm the in/nu < i, where mn is the plasma density modulation. Also
results of Rosenbluth and Liu.2" For the purpose of acceler- included in our model is an applied transverse static magnet-
ating electrons, it is desirable not only to have the largest ic field which is represented by the vector potential
accelerating electric field but also the phase velocity v,, less Ao = Bozi. l2)
than but close to the speed of light. We find, however, that as The electric and magnetic fields in terms of the vector poten-
the amplitude of the plasma wave gets larger, the corre- tial are E = - (I/c)(d/8t) AL and B = V X(AL A.) re-
sponding phase velocities become slower, i.e., u, - uh spectively. In our configuration the electric field vector is
scales as el" where u. is the group velocity of the lasers in parallel to the transverse magnetic field, EL !B,.
the plasma. The maximum accelerating field for a given laser In our one dimensional model, the transverse particle

' power parameter s is achieved when the laser beat frequency dynamics possesses two constants of motion, i.e., the canoni-
is less than the effective plasma frequency. The difference cal momentum in the x and y direction,
between the effective plasma frequency and the optimal laser

beat frequency is proportional to e/ 3. The plasma buildup C = - (le)/c!(AL + A,)) + pl. 13)

time is proportional to E
- 1 3 . The analytical results also Assuming that p, = 0 prior to the arrival of the laser pulses,

- . show that the transverse magnetic field has little effect on the it follows that 'the electron's transverse momenta are given
plasma dynamics to the lowest order. by

1975 Phys. Fluids, Vol. 28, No. 6. June 1985 Tang, Soranqie. and Sudan •975
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p, = flel/c, (4) t =

and

p, = ()e$/c)B0(z - z.). (5) Z = zo + (zo,7),

where Zo is the initial axial position of the electron, where zo is the initial position of the electrons at r= 0 and

The momentum equation in the axial direction can now (zo,r) is the axial displacement at time - relative to its inittui

be written as positionzo. Theaxial electric field written in terms of the new
variables (zo,r) isap: eflE ( ( cPA, dA , '

... . - +p,±A -" (6) E,(ejr) =4ejno0(z., r). 13.trmoc 'dz z /r s e s c pama i cd The equation governing the plasma oscillations can now be
where E, is the self-consistent plasma induced electric field, written completely in terms of z0,, i.e.,A, = AL • i, and A, = Bz. The particle energy equation is

d e! I' (. 2._4. + [a,( ±A !)2/ + (7)=t YM.C3 (3 t (9"t y rM_1c-"

*Combining (6) and (7), we obtain the equation governing the -2 - [ I - -'(al -4- a, ecs -.i 41i
axial motion of the electrons. 21 C a s

_ g 2)3 /2  Ea, (a) da(a)0n, = le( P(I-(aa+acoJb) -
dz mc 1s U 2+U)l" -T

dt m oc J I + U ! +. ) _ E. (a + a c sA --

C(1fl26) id d ('- ic4.)a a, sind4bj 1

2(I-'U- '+UJ) '\dz ~ +where a=tz /dr, a =z,- -',r, and 4 ',
= Ak Czn +z,(z,r)U - Ao +.46.

e v. The imposed laser field and the applied transverse rnag-
where fl'= = v./c, U= = (Ie)/r c2 )AL. and U netic field modify the plasma frequency and hence we define
= - (Ie$/m 0c)Bo(z - z,). Neglecting nonresonant terms

we find that an effective plasma frequency
U2 + ., (W /r~o+ f22/ -1 )1/!

where
+ a,a, cos(Akz - 4ot + 46 ), (9) w

wherei2 = [elBo/mc is the cyclotron frequency, a, = ejA, o [ + a + ..,., . (161
(z - v, t)/mc2,4Ak = -- k. o = w I - w,, = 6, - 6,, The effective plasma frequency c, is the relativistic upper-
and f = Aow/cdk. The difference in the laser frequencies is hybrid frequency. An increase in the transverse oscillations
assumed to be close to the plasma frequency, do =w,. Sub- results in a decrease in the velocity of the axial oscillation.
stituting (9) into (8) yields which in turn leads to an effective reduction in the plasma

__ _ lei P -R2)"' (1 -6 2  frequency. On the other hand. the transverse magnetic ie!d
E,- - (Z - zo} results in an increase in the effective plasma frequency

dt moc yL C

(1 -- 6;) (a ' C. Normalized plasma wave equation
+J c2To further study the dynamics of the plasma oscilla-

2 z tions, we normalize the parameters in the following manner,

X (a2 + a') + ata, cos4Akz -wt +4a6) 1, "=4an-, (17)

(10) E = (,k oa )(le/mo)E, =4k,where

.=(I + U2 + UZ)/2  Zo = Jkzo,

= [I + (4 2lc-)(z - zo)' + j(a' + a2) and

+ala 2 cos(4kz-o it +4$)] '/1 (11) G = (2 / 0 )(w/ 1 ,.

is a measure of the magnitude of the transverse oscillations The evolution of the plasma oscillation is now given by
induced by the laser beams.

B. Transformation to Lagrangian variables 7 + G) Y(

Equation (l0)is expressed in terms ofEulerian indepen- 1I -6 E )(I
dent variables z and t. It proves convenient at this point to = [a, - a, Cos VI)
perform a transformation to Lagrangian variables, 2'- 4 be.

cause the plasma induced field E. takes on a particularly + (a, + a, cos J ) a  v
simpie form. In the Lagrangian variables, the independent da - aZa: sin .,up (I i
'arthie, a - :., 'id -, sih h.t vh. re

K-5
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G and keeping only terms that are proportional to sin 'P .!nd 4

.:.,.~~~i . ... -9 2--.; ! --E , Z Cos 'P
7ja a) -a I.,Co - / 2  TdT

.= E - T+ Z, .1,3. (20) = - (e/2V,1E)sin(' -9)- F,

a -Z, + E- T, and E = EiZ,,,TV/9T.Thetotalrelaivis- where
tic mass factor associated with the plasma motion becomes E 311 -3G)SF = 1) ,.' co .

1Zo, T)=TY(P-'3 (21) 8 f , 1f 4' cof
our.Since the plasma oscillation amplitude is single valued, )COS - sin 0
our model is valid prior to electron trapping. i.e., trajectory 4 " J(2.E o9

crossing. Trajectory crossing occurs when the amplitude E I e4E((1 -3G)9

is approximately unity. + I- J(AE)sin
The equation of motion described by Eq. (18) is fully 2

relativistic in both the axial and transverse directions and -- e/dZ:IEsin 29 ]cos 0.
permits us to model laser pulses with a beat frequency other -

than the plasma frequency. Also, by varying the parameter
G associated with the transverse magnetic field we can also Using the small parameter expansions for the Bessel func-
model the surfatron configuration. tions, i.e., Jo0 x)= 1 - x2/4 and Jx) =x/2, Eq. (261 becomes

2 -do ,E sin 0 - 2 d- cos 0
dT dT

Ill. ANALYTICAL THEORY IN THE WEAK LASER FIELD
In this section we derive the scaling laws appropriate P.E l-?)sin 2( 4

for weak laser fields, i.e., electron transverse motion is mild-
ly relativistic. Here we consider the case where the two laser X (sin 0 cos 9 - cos 0 sin 9) + F, (27)

powers are constant in time and define the small parameter where
a Ill/[I + .(a' + ai)], (22) F /3 4E ' J E (

where the denominator of - is associated with the relativistic- /f 8. f
motion in the transverse-direction, yo. When a, - a,, e is e-A
proportional to the laser powers. 4 i os2 i

Assuming E to be a slowly varying function of time, it 2

can be represented in the formn +(=L --2 - 3G (sin 9 - -1E sirnt29 icos 'PE(Zo, T) =,E(T~sin{Zo,- r4-O(T)+,16 1, (23)

Separating the terms proportional to sin 'P and cos 'P, we
where4E(T) and 9(T) areslowly varying functionsof time obtain two simultaneous coupled equations for the ampii-
compared to the plasma oscillation period. Furthermore, we tude and phase variation of the excited plasma wave,
assume that w, wop so that Jr/c4k: 1. 1A _ 1 E4 G(e.I

dJ E OF J-E -- 'nc]s, + -3sin'9.
A. Small parameter expansion -T 14 16k f2 ., f

Expanding Eq. (18) in terms of the small parameters e
and E, we obtain the following equation for E: E dE= Ef- 1 3 .E'

E+ (II/f)E=-(E/2)sin .4 0 + F, (24) dT 2 f" 16 f

where [_.L~~(3± E- Gc
F(Zo, T) = t1 /f2 [(1 - G)/f2](1 - 2E) 4 16/ /2/f

X ( I - If/2)cos AbI + - E cos 20. ;2Sb

-(G/ 2f)(l - e cos d0)JE

. - (e/2)(E + 6 cos Aib)sin A1b, B. Constant of motion

40= E (T)sin 4P(Z,,,T) - T + Zo + 4( ,and =Z, - T Analytical expressions for. lEand phase velocity v,, of
+ 44$ + 9 (T). Using the identities the plasma wave can be obtained by assuming . It

will be shown later that this assumption is well founded
sin 40 , = J, (JE)sin (1 + 1)0P - 8], (25a) Neglecting terms proportional to IE" and e2:JE in Eq. 1S)

-"we obtain,

cos Atb = J,(AEcos((I + 1)P - 9], (25b) 4 -,.id sin e,
-- dT 4

1977 Phys. FluidS. Vol. 28. No. 6. june 1985 Tang, Sorangte, and Sudan 977
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. dE-O .Ef 2 - 1 3 JE 13p\ ,nc/e\ 6)E-d------- + -- cos 9 + i29b) E. - 36
dT 2 f 4 16]:J ;ei 3

Multiplying Eq. 129a) by cos 9 and Eq. (29h) by sin 0 and As the laser power is increased, relativistic effects on
adding the two equations yield the electron motion become significant. These relativistic ef-

d J .E (f2 - 1) 3 JE'\ fects cause the accelerating field to maximize at a laser beat
cos 9 )os -) = sin 0. frequency which is less than the effective plasma frequency.(30) For example, when the beat frequency is exactly equal to the

effective plasma frequency, i.e., f= 1, the maximum nor-
Using (29a) and (30), the following constant of the motion is malized field is
obtained: AE= (I 6/3)c 11/3 <.1EMAX. (37)
.E [E I + (16/3)(/2 - IWE + (16/31/2e cos I = C, It can be shown that the electric field maximizes to the

(31) value in Eq. (35), when the normalized laser beat frequenc'.' is
where C = 0, since initially JE = 0. f3,, = I - )e2'3 , 3S1

Employing (3O), Eqs. (29a) and (29b) become which corresponds to a laser beat frequency in cgs units ,iv-
;= - sin 0, (32a) enby

adT 4 4w = w,(1 - 0.54t213). (391
and During the acceleration process in injected electrons

dO f - I + -L 4E must be nearly synchronized with the phase velocitv of the
d16 plasma wave. To obtain the phase velocity, we follow a nuli

* where the initial conditions are ,E = 0 and 9 ,r/2. An in the plasma wave. We find that the phase velocity of the
alternate way to solve IE and 0 in time is outlined in the plasma wave and the associated relativistic mass factor are
Appendix. At exact resonancef = I and nonrelativistic mo- V d=V (40 i
tion in the transverse direction, i.e., ?o " " I and e -. a~a, the ph = I - -.a
expressions (32al and (32b) agree with that of Rosenbluth
and Liu.: 4

C. Analytical results r h r , d?')~ 4b

We obtain analytical results for the startup as well as where d9/dT is given by (32b) and I = L1 - 1L/cF1-1 -
the saturated regimes of the plasma wave. The plasma wave As the amplitude of the plasma--wave becomes larger, the
initially grows linearly in time, i.e., the initial amplitude of phase velocity of the plasma wave decreases. The phase ve-
E. in cgs units is proportional to F:, where locity of the plasma wave at the maximum electric field am-

* " = (fl,/4)(moc/e)w 1. (33) plitude is a minimum and given by

The most interesting results are associated with the satu- VA,.mmfl = v{I - 1.89e"). 411
rated regime. In the remainder of this section, we obtain The time it takes the amplitude of the plasma wave to reach
maximum accelerating electric fields, the appropriate laser the first peak is called the plasma buildup time and in nor-
beat frequencies, the corresponding phase velocities, and the malized units is given by
plasma wave profiles,.r dO4(10 The amplitude of the electric field is proportional to a T(fE) 4 - I + (9/16)E (4'

real root of the cubic polynomial (3 1). The roots are where -dE is e"Pressed n terms of 0 in Eq. (34). The equation

"E =A +-- A+'B A-B above can be integrated at exact resonance, i.e.,f= 1. Using
2 2 the fact that 4E= [E (16/3),cos 0]": at f= I, we can

A + B A - B (34) write
2 2 ,, = .3 dO

whereA=(_b/2 +h),B=(_b/2-h)"',h=(b 2 / 9 16)/ .,: -cos0)".
4 + a'/27) 112 a = 16/3(f2 - 1), and b = 16/3f le cos 8. For Evaluating the integral in (43), we obtain
h > 0, there is one real root given by JE = A - B. When
h< 0, there are three real roots, and numerical results show T(l,C) = 3(-- r (l /6)r 1/2)
that the relevantdEcorresponds to the smallest real root. At 9 161 F(2/3)
h = 0, 4E undergoes a discontinuity. = Z.48 3- { (44)

For a given laser power parameter e, the maximum Esoccurs at h = 0 and cos O = - I, giving Taking e = 0.01 as an example, the plasma buildup time a.
exact resonance is 29.1 plasma periods. i.e., T(I,C.0,l

JE.,, = 4(e/3)"' , (35) = 29.1(2,'-). Fore - 0. 1, the plasma buildup time is reduced
where c is defined in Eq. (221. The actual maximum field in to only 6.3 plasma periods. The plasma buildup time short-
cgs units is ens as laser power parameter 4 increases.

:9'.1 s. /!. . ,;I 29, , n ., - 7- - - - - -c-. Snrar;i. anh .,ca, i C. 7
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FIG. 4. Normalized amplitude of the accelerating electric fic!d E as a func-

at Lion of the number oflaser beat wave periods obtained with (he fuily relativ-

FIG. 2. Plot of a + as a function ofa, for, ,0.. istic equations for laser powers buit up over three laser periods.

Finally, we discuss the effect of unequal applied laser Equations (32a) and (32b) were numerically solved in

pulse powers on the plasma wave dynamics. Suppose a given order to verify our approximation 4,E I>, used in deriving
value of -is desired, the total power required for the laser is the constant of motion. Figure 3 is a plot of 4 " as a ,unc-

at a minimum when a, = a2 = a where a [e/(1 - e)],/2. tion of time for the parameters e = 0.01, G*= 0, and three
The expression for a, given a, and e is different normalized frequenciei f= 0.96, f= 0.98, and

a 2 = a1 /e - 1a2/e - (2 + (12)] 1/2 (45) f= 1.0. The curves show that the approximation, !4E e' is
indeed well satisfied. The curves for 4dEI in Fig. 3 are peri-

The range for at given e is

2e /2 odic in time and show that the plasma wave periodically

a = <a, <a,, ( (46) exchanges its energy with the laser field. The plasma buildup
C time is longest when the frequency isfo,, and is 29 plasma

A plot of af + a is given in Fig. 2 for = 0. 1. The use of periods withf= I and s = 0.01, agreeing with the calcula-
unequal laser powers can be advantageous in controlling the tions in Sec. III C.
value of the parameter e. Figure 4 is a plot of the amplitude of E as a function of

time for the complete equations (18)-1120), with the same pa-
IV. NUMERICAL RESULTS rameters as used in Fig. 3. The laser power was built up

Numerical examples are given for the complete nonlin- gradually over three periods of the laser beat frequency. We

ear and fully relativistic equations obtained in Sec. II, and used 6
g = 0.9999 for the purpose ofcomparing with analyti-

these results are compared to the analytical results obtained cal results. In this case, the amplitudes of the plasma elctrc
in Sec. III in the weak laser field limit, i.e., e,< I.

0.6 Analytical

tu f-~t 0.98 ,
= e1.00

f 1.0

L. 0.4-

W 0.951Io /

o 0.2 >.9 I'.9 Numerical

CL.a
E
< 0 0.90,1 Iii ,

0 20 40 60 80 100 0 20 40 60 80 00

Number Of Loser Beat Wave Periods Number Of Loser Beat Wove Periods
FIG. 3. Plot of rJA I as a function o" the number of laser beat wave periods FIG. S. Phase velocities obtained from thesimplified equations Isolid curvel
rort f -0.01, G =0 and three difrerent beat frequency parametersf= 0.96, and numerically obtained from the fully relativistic nonlinear equations
0.98, and 1.0. (dashed curvel for = 0.01, G ,0 andf, 0.98.
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FIG. 6. Comparson of JE_. based on the analytical result (solid curvel. FIG. S. Normalized peak amplitude of the accelerating electnc neld "'r
and the peak amplitude ofEnumencally obtained from the fully relativistc e - 0.01.0.04, and 0.16 within the normalized laser beat frequency r~a.;c
nonlinear equations (dashed curves). 0.8(< 1.1. The solid curves are analytical results of Peak .E ob:ained frcr

Eq. (341 and the dashed curves are numerical r6ults of peak ampittudc Cf E
obtained from the complete analysis of Eqs. (I 8 01.

fields are only slightly changed, showing that the analytical
equations are excellent in the small e limit. The normalized peak amplitudes of the accelerating

In Fig. 5, the phase velocities given by the analytical electric field for e = 0.01, 0.04, and 0.16 in the frequency
results (solid curve) are compared to the numerical values rnge 0.8<41.1 are given in Fig. 8. The phase velocities
(dashed curve) for e = 0.01 andf= 0.98. Thesliift of the two associated with the peak amplitude are plottedin Fig. 9. The
curves is caused by the three periods of laser buildup time in dashed curve are the numerical results obtained F.om the

the numerical calculation. The phase velocity Vph is at a local dasheecurvesar tumly reltstains fo the
as 4 in. complete nonlinear and fully relativistic equations' IS I-,20M,minimum when 1IE is maximum and decreases as 1E in- while solid curves are the analytical results obtained from

cre p t la. Eq. (34). The agreement for small e isixcellent.
The plots of the numerically calculated peak amplitude We note that the analytical solutions for the amplitude

of E (dashed curve) and the analytical expression of the plasma wave and the phase-velocity have discontinu-
= 4(e/3)"' (solid curve) are plotted as a function of

6"' in Fig. 6. The plots ofthe normalized laser beat frequen- ties atf.. Forf>f0 , 4E has one real root and the phase
• cyf (dashed curve), at which the largest accelerating electric

field is numerically obtained, and the analytical expression
forfo, (solid curve) are shown in Fig. 7 as a function ofe " .  1.1
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2 Numerical ,W 1.0 A
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FIG. 7. Comparison of the frequency at which the largest acc6erati'g etec. e - 0.01. 0.04. and 0.16 with the normalized beat frequen:y range
tnc field is obtained. The solid curve is a plot off, obtained analvticaily 0-3-,fl 1, The solid curves are obtained from the ,nal, ticl equations and
and the dashed curve is found numencally from the fully relatvistic nonlin, the dashed curves are obtained from the complete equations at the maxi.
ear equations, mum of E.
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FIG. 10. Normalized electric field for one period of the laser beat wave at
two different ampfitudest obtained at two different instants in time wit FIG. 12. Time evolution of the amplitude of the normalized clectrnc icld

E=0. 16,f - 0.925, and G =0. The point is marked by I) in Fg. 8. (solid curve) and the time-dependent laser power paramnetere (dashed curvel
forf - 0.925.

velocity associated with. the peak electric field is less than the electric field in our representation becomes multivalued and
* speed of light. For f<f,,, JE has three real roots. The the Lagrangian model breaks down. Since the electric feld

smallest value of the root is closest to the numerical result. produced by a turbulent plasma is unlikely to be desirable for
Forf<f., the phase velocity associated with the peak dec acceleration of electrons, the upper limit for 14E.iE
tric field is generally greater than the speed of light. JEi.. = 1.1. The minimum e necessary to obtain -AEii is

In the region marked by (- - = ) in Fig. 8, the analysis approximately e,.i. = 0.06.
is not applicable because of particle mixing. Here, the large To illustrate the relativistic phenomenon, Fig. I I shows
amplitude oscillations cause the electrons to become relativ- a plot of y, = [1 - (u,/c)2] - ' 2 for one wavelength of the
istic in wave steepening,0 '" which phenomenon is illustrat- laser beat wave for the same parameters and at the same
ed in Fig. 10. Two curves of the normalized electric field at instants in time as Fig. 10.
two instants of time arijlotted for one wavelength of the Numerically calculated time evolution of the electric
laser beat wave with parameters e = 0.16 andf = 0.925; the field and the corresponding phase velocity forf/= 0.921 are
point is marked by (*) on Fig. 8. The curve with the circular plotted in Figs. 12 and 13. respectively, where e is adiabati-
dots showing wave steepening is the normalized electric field cally increased from 0 to 0.16 in three plasma periods.
just before wave breaking. On the other hand, the wave pro- Since the saturated oscillatory electric field amplitudes
file is almost sinusoidal when the amplitude of the electric and phase velocities are not desirable for accelerating elec-
field is small, i.e., JAE 1 41 , as illustrated by the curve with trons, the laser pulse duration should be chosen to equal the
the crosses in Fig. 10. As 14E I becomes larger than 1. 1, the plasma buildup time. After the laser pulses pass through the

1.75 20

10 10

1.50-

1.25

15I

0 0.I.0)

Zo (Akz) 0 20 40

Number Of Loser Seat Wave Periods
FIG. II. Plots othe relativistic gamma asiocialed with the axial motion y,
for one period of the plasma oscillation for the same parameters and A, the FIG. 13. The temporal dependence of the phase velocity associated with
same instants in time as in Fig. 10. Fig. 12.

1961 Phys. Fluids. Vol. 28. No. 6, June 1985 Tang. Sprangle, and Sudan 1981

K-l0

!..-..



-. V E

WF Z--Z; E
-=1.0
a 0050.

Ww

0.5 0.5
0.

E 0.8

0 0 -
0 20 40 0
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plusm ter Of Loser WavePTransverse Magnetic Field Parameter (G)
SroFIG. t4. The temporal evolution of the ameplitudc of the normalized electric

field (solid curve) produced by pulsed laser beams e) (dashed curve) for FIG. 16. Plot of the maximum amplitude of the normalized electric d E
f- 0.925. (solid curve) and the corresponding phase velocity Variation U/c, lashed

curvel s a function ofi fore - 0.r16 and f - 0.925.

plasma, the plasma wave will continue to oscillate until dis- the plasmv was eueny, bet oa tle e s.rupted by various instabilities. Figure 14 plots the temporal o the eetive plasma frequency i ctonprofiles of the normalized stimulated electric field amplitude dynas ofe as w ave.
(solid curve) forf = 0.925 and a short laser beat wave pulse
e(t) (dashed curve). The corresponding phase velocity is V. SUMMARY AND DISCUSSION
shown in Fig. 15. After the laser pulse passed. the amplitude We have obtained nonlinear, fully relativistic results-or
and the phase velocity of the plasma oscillation remained the plasma waves excited by the beating of two laser be-ms.
roughly constant. We found that the effective plasma frequency is a functi on of

*Next, we examined the effect of the perpendicular mag- the laser power as well as the imposed transverse magnetic
* netic field on the plasma oscillation in the siurfatron cqnftgu- .field. in. the surfatron conflIguration. In the idtl situation

ration. An imposed transverse magnetic field can increase analyzed here, the amplitude of plasma waves becomes escil-
the t iotal electron energy by maintaining synchronism while latory. Since it is desirtable to maintain the accelerating elec-
accelerating the electron in the transverse direction. 2 The tric field at the largest value, the laser pulse duration should
analytical calculation shows that the transverse magnetic be approximately equal to the plasma wave buildup time.
field has a higher order effect on the plasma dynamics, The In the weak laser power limit, we obtained analyticai

* numerical result of the peak electric field and the corre- results for the saturated plasma wave for a range of frequen-
sponding phase velocity are plotted as a function of 6 for cies around the effective plasma frequency. As the laser pow-
e = 0.16 and f= 0.925 in Fig. 16, and results changed little er increases, the maximum amplitude of the plasma elect:ic
for 0< G< I. The imposed transverse magnetic field increases field increases as e" 3, confirming the previous work of Ro-

senbluth and Liu2- at exact resonance when the transverse
motion is nonrelativistic, i.e., yro = 1, and the coyresponding

* phase velocity decreases, i.e., u, - up scales as e". The
maximum accelerating field is achieved when the laser beat

1.0 -frequency is less than the effective plasma frequency. The
difference between the effective plasma frequency and the
optimal laser beat frequency is proportional to ell. The
plasma buildup time is proportional to e- 21.

Given a plasma density, the desirable range of normal-
-- ized laser beat frequency for growth of large amplitude plas-
a 0.8 ma waves is small, i.e., 1.05 Zff,, If the laser beat fre-
4quency is given, this condition can be translated to plasma
* density requirements. Defining o - 4n + . t, where

nf, I is the ambient plasma density that will provide exact
resonance at/= 1, i.e., w,(nf . , } (W /Yo + 2 2/!- 1/2

0.6 1= A,, where w = (4wje('n 1 , o/pn)'. The density crite-
0 20 40 ria for stimulating large amplitude plasma waves is

Number Of Laser Beat Wave Periods -0.1(1 + Go).S ,n/n.., <..le'3 (l + Go).

FIG. IS. Thephase velocity asociated with the pulsed laser beam shown in where Go = (2 / )(eO /o)- We now consider two ex-
Fig, 14. amples of plama density variation requirements without

H2 P / I 24. N j: 1.1 K-Il 7
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The tolerable density variation is reduced to 15% for

E =0.01. The application of transverse magnetic field B, in

the s.urfatron configuration can increasc the allowable den-
sity fluctuation limit by a factor I I + G,). lin an experimental
situation. Bo not only overcomes the problem ofdesynchron- .-S .0 f 0.96
ization, but allows more flexibility in the tuning of plasma W
density.

A comparison of the numerical results from the com-
plete equations with the simple analytical results for the
weak laser power limit is excellent for e<O.1, and is in fair
agreement for larger e. Numerical results show that the lar-
gest amplitude for the accelerating electric field in cgs units -0.6__
without electrons overtaking each other is -0.6 0 0.6

"E:i i(w/446.(moc/le). AE cose

The laser power required to reach this value without wave FIG. 17. Plot ofE sin e vs JEcos 9 fore - 0.01 and three different nor-
brean s poe0.0. rmalized laser beat frequencies.breaking is e-0.06.

For the purpose of accelerating electrons, it is desirable
not only to have the largest accelerating electric field but also wherex =4Ecos .y =. 4 sin 6and the initial conditions
to have u¢Ic less than but lose to unity. Instead, we find are x = y = 0 at T = 0. The amplitude and the phase of the
that as the amplitude of plasma waves gets larger, the corre- electron displacement are
sponding phase velocities become smaller. An applied trans- 1E = (x2 + y)* 2 , (A3a)
verse magnetic field can overcome the problem of desynch- 9 = tan -'(yx). (A3b)
ronization of the accelerating electrons in the accelerative
electric field. Since the transverse magnetic field only modi- Figure 17 is a plot of x and y for e = 0.01 and three different
fies the effective plasma frequency, but has little effect on the normalized laser beat frequencies: f= 0.96; 0.98, and 1.0.
plasma dynamics, the surfatron configuration may be the Forf>f,, the enclosed area is to the left ofx = 0, and :o the
desirable way to operate the laser beat wave accelerator, right of x = 0 forf<f,,.

Finally, we would like to point out that the laser plasma
interac:ion contains a rich souree of instabilities,'many of
which may be detrimental for the formation of the large am-
plitude plasma. waves studied in this paper for the laser beat 'Laser Acceleration of Parrcics. A IP Conference Proceedings No. 91, edit.
wave accelerating scheme. Some of the processes"1 that have ed by P. 1. Channel (American Institute of Physics. New York. 19821.
large growth rates are three-wave forward Raman scatter- 'The Challenge of Ultra.High Energies. Proceedings of ECFA-RAL meet-

ing, Oxford. 1982 1Rutherford Appleton Laboratory, England. 19831.
ing, four-wave forward Raman scattering, and processes as- 'H. Motz. Contemp. Phys. 20. 547 (1979).
sociated with background ions. Other areas requiring inves- 'P. Sprangle and C-M. Tang. IEEE Trans. Nucl. Sci. NS-23. 3346 199 11.
tigations are the effects of the transverse Weibel instability C. Pellegrin. in Ref. I. p. 138 and in Ref. 2. p. 249.

iinR. B. Palmer. in Ref. I. p. 179 and in Ref. 2. p. 267.induced by energy anisotropy, the influence of kinetic ef- 'R. H. Pantell and T. 1. Smith. Appl. Phy%. Let. 40. 753 (19821.
fects, self-focusing of laser radiation, and filamentation. De- '3. R. Fontana and R. H. Pantelt. J. Appl. Phys. 54. 42SS t933.
tailed studies of them are necessary to evaluate feasibility of "A. A. Kolomenskii and A. N. Lebede,. Sov. Phys. Dokl. 7.745 11963).
the long term goals of the laser beat wave accelerating '*P. Sprangle. L Vlahos. and C. M. Tang. IEEE Trans. Nucl. Sci. NS-30,
scheme. 3177 (1983).scheme."A. M. Senler, in Ref. 1. p. 154.
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Finite Larmor radius diocotron instability
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The diocotron instability of an electron layer in which the electron Larmor radius is of the order of
the layer thickness is studied. Remarkably, exact analytical solutions are obtainable in a
nontrivial special case. These results allow an examination of the effects of finite Larmor radius
for arbitrary ratios of Larmor radius to wavelength and of Larmor radius to layer thickness. In
addition, an energy principle which yields a necessary and sufficient condition for instability for
general distribution functions is derived.

0 I. INTRODUCTION believe that the results obtained for this special case are rep-

The physics of unneutralized, single species plasmas is resentative of what happens in general.

of great basic interest, as well as being inherently related to a (3) Using the results of the analytical solution we find

number of applications. These applications include collec- the following:
tive electromagnetic wave generators (e.g., gyrotrons and (a) Finite Larmor radius does not stabilize a beam
free-electron lasers), particle accelerators (e.g., the modified wherein the guiding centers are localized (i.e., A = 0, wherebetatron), diode devices, etc. In all of these situations stabil- A is the half-thickness of the guiding center spread), andity of the plasma is a key consideration. Perhaps the most instability persists at all wavelengths, although the growthbasic instability of an unneutralized plasma is the diocotron rates are reduced (cf. Figs. I and 2).bsi instability h an rivin tiinstability is the (b) Beams offlxed thickness 6 = 2(4 + p) (wherep is theshearbin theEXB velocity resulting from spatial dependence Larmor radius) are destabilized by increasing the relativeshea inthe XBvelcityresltig frm satil deendnce fraction 2p/& of beam thickness due to gyroradius (cf. Figs. I
of the self-electric field F, created by the equilibrium charge an 2 or
density. and 2).

In this paper we consider the diocotron instability of an 1c) For a beam of fixed guiding center spread 4, increas-
electron layer in which-the typical electron is allowed to have a ing p is stabilizing, in that the growth rates are reduced and
Larmor radius of the order of the layer width. The resultsof the range of unstable wavenumber becomes smaller (cf. Fig.
our analysis are as follows: 3).

(I) An integral equation eigenvalue problem for the (4) A necessary and sufficient condition for instability in
Fourier transform of the electrostatic potential is formulated the form of an energy principle is derived for the case of a
(Sec. III). general symmetric distribution.of guiding centers that de-

(2) An exact analytical solution to the full problem is creases monotonically away from the center of the layer (Sec.
given for a special case which, however, is general enough to V).
encompass the full range of ratios of Larmor radius to layer (5) As in the case of zero Larmor radius, the diocotron
thickness and of Larmor radius to wavelength (Sec. IV). We instability occurs only if the component of the propagation

direction along the magnetic field is less than a certain small
6 2.critical value (Sec. VI).

o 'Finally we note that the techniques and results of this
study may be useful in the context of other problems with

'V'

.255

02// .5
: UNSTABLE

kV8 .25

FIG. 1. The k,b dependence of the normalized growth rate . Each curve
is a rameterized by 2p16.

kv$

'Aio at Deparlments of Electrical Engineering and of Physics. FIG. 2. Stability diagram in the (k,6,2p/6) plane.
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1,.0 is the probability that a particle with guiding center position
Y " X and Larmor radius p=-v,/12 is at (x, y) at time t. After

a8 integration over y and t, expression (3) becomes

a6 v(X,v 1 ) = f dx 1, V(xpo(xX, p), (4)

04., where the probability densit, in x
0..p(x.X, p) = p~x - X; p)

02 f I

= ;[P2- (x - X)2 ' 1/(5)

0 0.2 0.4 0.6 0.8 1.0 1, otherwise.
kYA The essential approximation used above is that, in a frame

FIG. 3. The k A dependence of P. Each curve is parameterized by plA. moving at the velocity V(X,v1 ), the equilibrium electric field,
E 0 (x), makes a perturbation on the lowest-order fast circular

gyromotion which is small. In this frame the electric field is
large self-electric fields, such as resistive wall and ion reso- E; = E0 + VBdc, and the maximum E ' seen by a particle
nance instabilities 2 of azimuthal mode number m>2. is of the order ofp dEo/dx. Thus we can estimate the size of

the perturbation in velocity due to E ; to be of the order of
II. EQUILIBRIUM dEo(x) 1

Consideranonrelativistic, singlespecies, Iowa6 (= ratio dx m

of plasma pressure to magnetic field pressure) plasma im- Requiring that this be small compared to v, and making use
mersed in a uniform magnetic field B = Bo, where 1 is a unit of Gauss's law (1), we find that our drift approximation is
vector in the z direction of a Cartesian coordinate system valid provided that
(x, y, z). Suppose that the plasma is in an equilibrium *'hich W 2 4a 2 (6)
is uniform and unbounded iny and z, and localized in x with P 1/

a particle density n(x). By Gauss's law there is an accompa- where w~p = (417nq2 /m)" 2 is the plasma frequency. This con-

nying electric field E = Eo(x)k, dition is also sufficient to neglect the modification of the
equilibrium magnetic field caused by the diamagnetic cur-

dEo(x) = 4irqn(x); (1) rents of the gyrating electrons.

dx Direct integration of Eqs. (2) shows that the x coordi-

Eo(x) is odd about x = 0 if n(x) is even. nate of the guiding center position X -x + v, /2 is an invar-
The single particle equations of motion in this equilibri- iant of the motion. When the limitation (6) on the plasma

urn are density is satisfied, the invariant X reduces to x + v. I/l.

di The equilibrium particle distribution functionfo(X,v ,v ) isa
(2a) function of the invariants of the motion: the guiding center

position Xand the speeds v, and v,, parallel and perpendicu-

dv q Eo(x)i + fivX2, (2b) lar to the magnetic field.
i dt m

T 111. KINETIC THEORY-INTEGRAL EQUATION
where 1 qBo/mc is the gyrofrequency. Assume that the
density and, hence, the electric field are sufficiently small so The evolution of the particle distribution function

that the dominant motion in x is the gyromotion f(x,v,t) is described by the collisionless Boltzmann equation

v" (0)= U cos(flt + d -VV +) B) ( \ f =_0
"xlt ) =f (v, ID )sin(D2t + ; ) + X. at m c o0

For electrostatic perturbations of the equilibrium, the per-
T t l i y cturbed distribution function f satisfies the equation

v,, = v,+ V(X,), ? oxk+Dx
is the sum of the velocities due to the gyromotion v. = - VM at
X sin(flt + ;) and the finite Larmor radius E XB drift. The
latter quantity is just - cEo[x(t )]/Bo- V, [x(t)] averaged = - , (7)

over a gyro-orbit, m (7

r where - Vq. Equation (7) can be solved in the usual
V(X,v)T-' dtfdyfdx manner by means of the method of characteristics. In terms

0 of the equations of motion for the unperturbed orbit,

X V,(x P(x,y,'X,p), (3) dx'
where the gyroperiod T=21/2 and V , (8a)

,%: . ~~p(x,.,t ',4 ~) = b (x - X - p sin(12t + 1 v _ ox + a 'X ,( bp~~y:; 4,J=(xX-si~ft+)]dv' q Eo(x')1 + i2v'xi, (8b)
"X* y -p cos(2t + ] dt m
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with the initial conditions x'(t' = t) = x and v'(t' = t) = v, exp(iz sin 4,) = J. (z)exp(intb),the so lu tion of E q. (7) is . .."= "
t so(xlution of Eq . (7 dt) iwe find that the perturbed distribution function! is

* f~~v~t ~ J dt' V' (x',t') ~)~~m (k,v) = -t dt ' dX f k (k '
• -7f(X V;,V1) (9) xi(k, co1, kt' - t) + ] -L

In this section, as well as Secs. IV and V, we shall take Tcos[l' - t } + " ...
the wavenumber parallel to B to be zero, k, = 0. The case fo(Xv,,vexp(i (k' - k
kI #0 will be considered in Sec. VI. For perturbations of the.fae.-
formj(x,v,t) =f(x,vexp[i(kyy - wt)], Eq. (9) becomes - [a - k, V(X,v)] (t' - t)})j '(~ v) '-=dt' [(2 1 , + ik , ) (x')] × x . __ ) , .-?=,) = S - f 

-
cao 

1 2 = 
.

a x exp(i4n[f2(t' -t) + + 9'] + m( ++ r)l,
f0 V. (14 )

Xexpli[k(y'-y)--t'-t)]). (10) wherek, =(k+kV)'/2 andk, =(k'2 +k 21/
2 .

The Fourier transform in x of Eq. (10) is The perturbed density h(k) is defined in terms of.(k,v)

A~ Ik f by
f(k,v)- dt' I - dx 2,d w~ )m f- f . 21r J-ni(k) = Fdd 1 .V dV I~ ~

X i(k 'k + k k '), -f o(X ',v;,t) and the potential (k) is self-consistently determined

Xexpli[k 'x' - kx + ky(y' -y) - a(t' - t)] through Poisson's equation

(11) k2 (k) = 4I1q(k).• Integrating f in Eq. (14) over the gyroangle and keeping
where k is the transform variable. It is useful to transform n ter f e( over the gy V nD keping
the integral over x in Eq. (11) into an integral over the guid- only the term of lowest order in I fo - k r V/f <, we find
ing center constant of the motion X; the result of this trans- that the self-consistent integral equation for 4 (k (is
formation is k 2 (k)= 4rkyqc r dk' (k')

f(kv)= -f d:'f.±LfdX (k') BX f _ jv

X i(k '1 + k, ). P) (X v ,vp
avr exp[i(k'-k)X] d

Xexp(i4(k'kW+f2[kv(t'=t) w® d -ky V(X,v,) X

Previous work has dealt only with the laminar, zero Larmor
(12) radius diocotron instability. To recover this limit, setfo(X,v1 )

The unperturbed particle orbits are obtained from the = (X)6(v1 )/(2wv.) in Eq. (15), where O(X) is the particle
equations of motion (8). As discussed in Sec. 1I, with the density. After integration over v,, the inverse Fourier trans-
density limitation (6) the particle orbit consists of the gyro- form of Eq. (15) becomes the known differential equation
motion together with a mean E x B drift motion eigenvalue problem for the zero Larmor radius diocotron

instability,'
y --y= (v1 /J2)tcos( (t'-t)+ '] -cos "I d2 (x - k d(x(x 41rkqc (x) d'x)

+ V(x,vt' -- ), (1 3a) dx2  B0  w - k, V, (x) dx

v,(t')= -. , sin([l(t' - t) + , (13b) (16)

where Cis the gyroangle and the mean drift V(X, ) is defined
in Eq. (4). It is useful to transform to polar coordinates in IV. DIOCOTRON STABILITY- -A SOLUBLE MODEL
wavenumber space, Consider a plasma in which all the particles have the

k =k, cos0, ky =k sin 0, same v, and the guiding centers of the particles are uniform-

and ly distributed in a slab IX I < A. The equilibrium distribution
functionfo can be written in the formk '= k , cos O0 ', k, =k , sin O0 '. 

voifue = X) ,(t , 17a)
Then, insirting the orbit (13) into Eq. (12) and using the Bes-
sel function identity where
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t'(X) = (N/24 )[H(X+ A) - H(X- )], (17b) V(A,p). The mean ExBdrift velocity V(X,p)isgiveninEq.
"(v ) = 6(v, - v 0)/2ro,0, (17c) (4),

and H (X) is the Heaviside step function, V (X,p4= - f-L- { dx E. (x)p(x - X; p), (22)

I, X>O, B0
H X) = 0, X<0 where the probability density p is given in Eq. (5). An expres-
Insertion of Eqs. (17) into the integral equation (IS) for sion for Vin terms of the guiding center distribution function
I(k)and subsequent integration over the guiding center pos- O(X) is obtained as follows. Let us take the derivative of Eq.

tion X and the velocity v, yields the integral eigenmode (22) with respect toXand then integrate by parts; the result is

equation dV(X,p) - cfd(x-X;! pd E.(x).

k-k k' V- f ±L~ (k ')10(k, p).10(k ,p) Usin Gaus' law f
4d 2r 2ng Gauss's law (1) and noting that the particle density

-. ,. n(x) is related to the guiding center distribution Yh(X) by the

X (exp[ - i(k' - k (4] equation
W+ ky V(4,p)

exp[i(k'-k), ] (18) n(x)= dX' t(X')p(x - X'; p),

w - k, V(1, p) ' we find that

where V,21rNqc/B0 , the Larmor radius p = vo/fl, and dV(Xp) 41rqc p)
we have noted that the EXB drift V( -4, p) = - V(4d, p) dX - B dx0 px JX,
since E. (x) is odd about x = 0. The right-hand side of this

integral equation is the sum of two terms, each of which x fdX'p(x-X'; p);NX'). (23)
has a kernal K(k,k') which is separable: K(k,k') .
= K,(k )K2(k '). As a consequence, Eq. (18) can be written in By the convolution theorem, the Fourier transform of Eq.

the form (23) is

$ (k) = [o(k1 p4/k ] (ae'ka + fie - ), (19) ikV(k,p) - (4'qc/B0 p(k;pp( - k;p)0(k), (24)

where where the Fourier transform of the probability p(x; p) given

(k, Vo/A ) dk' -k'k -in Eq. (5) is p(k; p) = Jo(kp). For the uniform guiding center
a W + k- V(A, pj 21r (k ')Jo~k p)e distribution( 17b,), the transform tb(k) = N sin(kA )/(kd ) and

and Eq. (24) becomes

V (k, p) = 2i VoJ I(kp)sin(kA )1k 2A. (25)
4 _ -k- ) F, - p 4k'.J0(k p)e 'k The inverse Fourier transform of (25) yields the final result

"2~p 2(kp) sin(/) sin(kX)
are numbers which are independent of k. Substitution of V(XP)= 2 V, dk k skX (26)
expression (19) for (k ) into Eq. (18) yields a pair of.linear W p 2 6) k k
homogeneous equations for a and 6: With expression (26) for V, the dispersion relation (214

4kV-')for the growth rate y can be written in the form.i(k, VoIA )
W + .k,V4 ap-- (f_ dk Jo(kp))

f-k ,+ dkJ 4( ) 42k k)2,
Jj(- p) (k k*" ) (2pb) - 2' 'A12

-(ak+ flp(+0a) dk (j(kp) sin2 (k)) i
2v 2k, kX 021r k 2J )2 'p

× . " k ; (+ dk J2 (k, ) sin'(kd .)

The numbers a and 0 in Eqs. (20) can be nonzero only if the - _ 21r k 4 _ (27)

determinant of the system (20) is zero. Thus the frequency where -y/k, V is the normalized growth rate. When
w - iy satisfies the dispersion relation p = 0 we recover the guiding center result

r2 dk J2(k, p) p2 = [e-- _ - + 2k,6 - (k,6)2 ]/(k,6) 2,

where 6 -2A is the plasma width in x. A guiding center

"dk J2kp) I1 plasma slab is unstable to long wavelength perturbations
"V2 0 k - 1a (21) with kY& < 1.28.

f 21nd k 2 For a sheet distribution of guiding centers (= 0), the

To proceed further with (21) we need to evaluate dispersion relation (27) reduces to
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P2=4 (ydk J(kp) f [(,1k, V df(,IX
2,r k'ff[ (, - k, V)' + ][7, +k, V) 2 +

X dI ( kJk )] ( 21rvdvdX=0,
lx J- dk( o2kp)- _ p) (28) where a), = Regal, y = in(w) > 0, and we have utilized the

1ra odd symmetry of V[V(X,v,) = - V( -X,v,)]. Since Vdfo/
Transforming the integration variable in -f dk (k~ 8X > 0 for X # 0 (assuming q > 0), and since I > 0, we see thatk J{~ ~r~k~ *wcnrwiexrss~{8fr the integral above is always positive. Thus wa, = 0, and we

ras conclude that if (k) is real, then the instability is purely

-. JC ,(k, p) [ k d kp growing.
2 16j ) J °[kp) With this information we can rewrite the quadratic

form Eq. (29) as+ o2(p} 1 (k 2 2)1/2

+ f k j(kp)(Il k-.k~y'~ 1/ro.= A [d';r], (30)
k ' where the functional A [ ;rj is given by

which is manifestly positive. Hence a sheet distribution of
particle guiding centers is always unstable to perturbations A [2] =

" [ y
* of any wavelength no matter how large the Larmor radii of f k , 2 dk

the particles are. (31)
In general, the width & of the plasma slab is

6 2(4 + p). Figure l is a plot of the k, 6 dependence of p2. and the function is real. It is easy to verify that the equa-

Each curve is parameterized by the quantity 2p/6, which tion, 1/o = A [ ;r], is variational (that is, setting 6ro/
measures the fraction of the plasma width which is due to the 6b = 0 yields the original integral equation).

particle Larmor radius. A diagram of the region of stability We now wish to show that A [O;r] is bounded from

• in the (k, 6 ,2p/ 6 ) plane is shown in Fig. 2. The range of unsta- above. To do this we make use of Schwartz's inequality,

ble wavenumbers increases as the Larmor radius becomes a (71,' )2 <(77)(',
larger fraction of the total plasma width. applied to the quantity 1,

For a plasma with fixed guiding center widthA, an in- Jk
crease in the particle Larmor radius is stabilizing. Figure 3 is I= dk [kj (k)] "k-, e/1 X
a plot of the k, 4 dependence of P for several values of the f

* ratio p!A. Typically, the growth rate -is reduced as p in-
creases. < (f dkk ) (f dk J0 (Jk/ f)

Thus
V. ENERGY PRINCIPLE
A. Sufficient condition for Instability where

* Multiplying Eq. (15) through by the conjugate of (k),
and integrating over all k, we have the quadratic form, A.., (r) =f Jf 27m dv, dXdk

k~I# (k)1 dk= y.ofVdv, V ka.4a f kv 1  )(3f f1 (,v 33)

X fdX9f' I(X,v,,k,) y2 +k V 2  .kL

XJ U aX w - k, V(X ) Say we find a trial function &. and a trial growth rate

(29) r., such that

where I (X,v,,k,) = dk (k )o(k, v, /D )exp(ikX) 2 and A [ .,". ] > 1/ro,
ro = 4rk, qc/Bo. In all of what follows we shall takef0 (X,v)
to be symmetric and monotonically decreasing away from then we claim that this is a sufficient condition for an insta-
X = 0: fo(X,v1 ) = fo( - X,v1 ), and dfo/dX O for X!;0. We bility with growth rate greater than y.. To see that this is so,
now derive a condition for Eq. (15) to have an unstable solu- we represent the situation schematically as in Fig. 4. Since
tion for which the corresponding eigenfunction 4 (k) is real. A [,r. ] is bounded from above by Ame (y. ), we see that
Since unstable solutions may also conceivably exist for A [ , y. ] must have a maximum (as shown). From (31) we see
which (k) is not purely real, the condition so derived will that A [ ;y] is monotonically decreasing with y and tends to
only be sufficient for instability. Subsequently we shall prove zero as y-*0. Thus as y increases past y,, the "curve"
that it is also necessary. A [ ,y'] lowers until, eventually, at some value of y (here de-

Assume that there exists an unstable solution with q noted y,, .), the maximum of A is I//o occurring at
real. Because (k) is real, I(X,v1 ,k) is seen to be even in X. $ = 4*.. Since (30) is variational, = =* w = iy7 , sat-
Since dfodX is odd, we may replace (w - k, V)- 1 in (29) by isfies the original integral equation, Eq. (15), with a growth
its odd part in X. Then, taking the imaginary part of the rate in excess of the original trial growth rate. y. , > y,. In
quadratic form, Eq. (29), we obtain particular, a sufficient condition for instability is
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A

-I- Re (~

Im(D)

FIG. 4. Schematic illustration of the argument for sufficiency. Note that the (b
horizontal axis is meant to represent an infinite dimensional function space D . 1.
[the spac of all (k )]. _____________(D

f5f v, dv dX Ik, )fdv, ;rplne
A [4' 0] >. FIG. 5. Nyquist contour in (a) the complex cw plane and (b) the complex D

f z, . A Y

for some real trial function satisfies (34), then there is no counterclockwise encirclement

iof the origin.
.ecesity of(3ustornstabiiNow consider the part of the w plane contour that is

We now wish to demonstrate that (34) is also necessary along the real w' axis. From (37), where Im(a) = 0',
for instability. That is, if there is no trial function whichv d 1w, , VW
satisfies (34), then the plasma is stable. The technique for Im(D) = i f k1  1  (k)-I df (38)
showing necessity is based on the Nyquist criterion and is G i k ( the c pln dk
similar to one used by Antonsen and Lee for a different prob- For x-. ± oo, we have E0 -. ± E.., where Em.,j
lem To utilize the Nyquist criterion, we introduce a disper- 2irq f f 2v, dv dX. Thus there are no particles with
sion relation D (4,k,) =0 for Eq. (15) as follows: I V> V.bi CEity lB. Furthermore, the resonant X value

is positive for h, in (38) positive, and it is negative for a,
We n-o iso or)3 a n s negative. Thus (38) shows that w

fo itiy (kT )Im(D) =0, *for h i an>kVmn (39a)

Im(D)>0, for 0>a,> -kyVm.A, (39b)

sito ud b AntoJnsje am(D) =O, for ha, =o, (39c)
=- d (k' k W] Im(D)<O, for Ic, >,,>O, (39d)
fX exp[ilk' -k )"X] Ofo (35) where we have utilized Of/BX; O for X50, and dfo/OX = 0
f. w-k,V(X,v 1 ) OX atX=0.

For given (w,ky) we regard (35) as an eigenvalue problem and Now say we start our circuit in the w plane at
D as the eigenvalue. This defines D (a,k,). The solutions of w, = + ao, Im(w) = 0. We then travel around the semicir-
D (a,k) = 0 represent solutions of (15). Again making (35) cle in the upper-half oi plane shown in Fig. 3(a). In the D
into a quadratic form by multiplying through by 4 0(k)I and plane Eq. (37) shows that this semicircle maps to the point
integrating over all k, we obtain an equation of the form D = 1/7yo [cf. Fig. 5(b)]. We then travel along the real c axis

Da,ky)-- l A- (k,), (36) from a,= -00 to co, k= - VVm.,. From (39a) the D
plane contour remains on the real axis. Assume, in addition,

where that there are no roots of the dispersion relation for a purely

,f f £ dv, dX [-(fo/dX)/(w -kV)]I real and in the range [- , - k, V,,,,] (this will be verified
A k (k) dk later). With this assumption the D contour corresponding to

(37) a, traveling from - oc to -k, V,. does not cross the
is7 torigin of the D plane. As a, increases from - k, Vm., the

and we emphasize that the 4, appearing in (37) is the solution contour remains in Im(D ) > 0 [cf. Fig. 5(a) and Eq. (39b)]. At
of the eigenvalue problem (35). a, = 0, the contour crosses the real D axis. The situation,

Now consider the Nyquist contour in the complex a which is symmetric about the real D axis, is shown schemati-
plane shown in Fig. 5(a) and follow the corresponding con- cally in Fig. 5(b). It is seen that if A [ ,0] < 1/yo, then there is
tour in the complex D plane. Using the Schwartz inequality, no unstable mode. Furthermore, when a = 0,
we see that (37) has no poles in the upper halfaw plane. Thus exp[i(k,_k A]fd X

the net counterclockwise encirclement of the origin of the D dXplane by the contour is the number of unstable solutions of w - k, V(X,v, ) dX

the dispersion relation. To show that Eq. (34) is necessary for - - ( cos[(k' - k X] o d] ,
instability, we need to demonstrate that if there is no which J.-J- k, OX

946 Phys. Fluids, Vol. 28, No. 3. March 1985 Kleva, Ott, and Manheimer 946
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F

plane. Since there are no such poles, there can be no wL = w,
root.

Finally, we note that our proof of necessity implies that
AA. (0) < l/ro is a sufficient condition for stability.

-o -k, , k,V_ VI. FINITE WAVENUMBER PARALLEL TO B

In Secs. III-V we have taken k. = 0. We now return to
a discussion of the effect of finite k.. First we recall the

(b) im(Dknown zero Larmor radius dispersion relation for a sheet
beam with finite k. (cf. Pierce'),

-o 1 -,..'tymo aw .. ./ " Re (D) -= - (40)
k .] ! 2 (k2 2 , )/2 v

where P is the growth rate normalized to k, V, and
V,=0 21rNqc/B o (cf. Sec. IV). From (40) we see that the mode

FIG. 6. Nyquist contour in (al the complex w plane and (b) the complex D is purely growing for waves with
* plane when the dispersion function D has a zero on the real w axis at wd = o.  k + 2 V (42)

< (,+k 0(41)

and the solution to (35) has a purely real eigenfunction. Thus, 72
we see that A [. ,0] > 1 /yo, for some real k.,is necessary for Since our analysis is in the guiding center limit 2> "y, the
instability. QED right-hand side of (41) is small, indicating that instability

It remains to verify that D (w,ky) = 0 has no solutions occurs only for nearly perpendicular propagation. When (4 1)
on the real a) axis for ca, in [- ao, - ky Vm..] and is violated, (40) indicates that the modes become purely oscil-
[ky V_,, ,oo ]. For illustrative purposes, assume that there is latory. We wish to see what effect finite Larmor radius has
one such solution (similar consid-'¢ations apply if there are on this result. We find that the situation is qualitatively un-
any number), and denote this solution w = wo. Figures 6(a) changed, although there are, of course, quantitative changes.
and 6(b) show the situation for this case corresponding to Inclusion of finite k. in the integration over unper-
Figs. 5(a) and 5(b) for the case where the o) = wo root does not turbed particle orbits is a straightforward extension of the
exist. As seen from Fig. 6(b) there are two clockwise encircle- treatment of See. III. The integral equation eigenvalue prob-
ments of D = 0, implying two poles of D in the upper half w lem Eq. (151 then generalizes to

kk dk' (k') v, dv, Jo Jo( )
B0  f_.

9fdX [f,(X,v, ,v,)IaX ] + (k, /k,)12 [dfo(X, ,v )/dv e, . _ ,X (42)
• , . a - k, V(X,u) - kve

To solve (42) we take the case of a beam with all gyrocenters located at X = 0, neglect thermal spread along B, and again
assume a delta function in v ,

fo(X,vu,v,) = N6(X)6vvj6(v - v,o)/(27rvo).

Performing the v, andX integrations by parts and using our assumed form off, we find that Eq. (42) yields

_4irk qcN + k [ 1 ~ i(k' -k(1(k -+ k 2) - 4 c dk' (k '(k, p)J(k p) ky V' + 2 +, (43)k )k(k) ( Bo 1r 2k,

where V'-dVX, 0 )/dX evaluated at X = 0, andp = v,,/ Note that (28) is recovered for k, -. 0, while (40) is recovered
12. Examining the k dependence of the right side of (43) we for p-0. As in (41;' instability will occur only if k is suffi-
see that i (k) has the form ciently small compared to k . The condition for instability,

(k ) = (k' + k )- 'J(k p)[ + ik/ ]. generalizing (41) to finite gyroradius is
F(s)

Substituting this expression for back into (43) and proceed- 1 k, c"2, uC
ing as in Sec. III we obtain the dispersion relation = -. Jdu ,J-(us) - +k

Ir (k 2 + k 2)
1" f 'u- + I + (k:/k,)2

(f:dk J )(k, p( k-
dk ____k ) li dk J , -) k 12 (4,
21r k +k [ [ +  21r k (k2 + k' V,,

X( j ° (kp ) -  k] I k 12 where sjIk, o Iand F(0) = I in agreement with (41). Here
k0_k_ J I(k

p  . F(s) can be eviluated asymptotically for s> I and is found to
k2+ 22 k V) decrease slowly with increasing s, thus narrowing the unsta-

(44) ble range of propagation angles,
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Abstract
0

Several one dimensional models are derived which approximate the relativistic flow of high

current beams in diodes. Using these models as a starting point, a diode for a I GW beam for a 35

GiN gyrotron oscillator is easily designed.
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I. Introduction

The design of a diode, or electron gun. for a microwave tube is a complicated two dimensional

spatial and three dimensional velocity space problem. It involves a calculation of nonlinear particle

*I orbiL and self consistent electric and magnetic fields. In virtually all diode design work, the basic tool

is the electron trajectory (llerrmannsfeldt) code, which solves for the electron orbits and the self con-

si t.nt electric and m:gnetic fields in an arbitrary two dimensional configuration. Since this problem is

* so complex and the paramneter space so vast. a diode design using only this procedure can be very long

and expensive. For this reasons, one dimensional approximations to the physics are extremely useful.

This is particularly true for space charge limited diodes, which are used for intense pulsed electron

* beams. Since the electron trajectory code begins with vacuum fields as their first approximations, it is

often difficult to converge on a space charge limited flow solution.

The basis of this paper. and many other works in this area. is that there are useful one dimen-

* 0 sional approximations to the'orbit in infinite media. Then the infinite media approximation is rcla.xed

by taking only a spatially limited part of the infinite flow pattern, and using focusing electrodes to create

the fields set up by the remainder of the beam which was excluded. (Harker; Dryden; Kirstein, Kino

* and Waters: Tsimiring, Manuilov and Fliflet et al.). The shapes of the focusing electrodes are deter-

mined by the particle orbit. Along the orbit which is an open curve, both the potential and it- norrna;

derivative are known. Laplace's equations must then be solved exterior to this orbit to determine the

equipotentials (that is, the shape of the focusing electrodes). However, the solution, subject to this

open surface boundary condition, is unstable. To determine the solution, a scheme based on conformal

mapping is used. The orbit equation is rewritten as an equation valid in the complex plane. Then the

potential is calculated by for real r and imaginary z at some fixed value of real z. This involves the

solution of a wave equation, which has stable solutions for Cauchy boundary conditions on an open sur-

face. Evaluating the solution at the imaginary part of z==O gives the potential as a function of r at the

fixed value of the real part of z chosen. Thus, a stable solution is built up by taking a two dimensional

projection of a solution in three dimensions. The equipotentials are then appropriate places for the

M- 7



M h AU: 1 or' f(€ .o-ing eh ctod'.-.

The only trouble with this method is that once the beam becomes relativistic, and/or self mag-

netic fields become important, as is the case with intense pulsed beams, there is no one dimensional

model which describes the flow. This paper derives a variety of approximate one dimensional models

for space charge limited flow in a diode. While no model is exact (the electron flow is inherently two

dimensional). they provide imporunt insight and allow for approximate synthesis of the electrodes.

The actual electrodes can then be quickly perfected with the Ilerrmannsfeldt code.

Finally, we note other attempts at one dimensional models. A model similar to one of those in

the next section, but with the magnetic field parallel to the cathode plane has been derived by Gold-

stein. Another approximate model, valid in planar. cylindrical on spherical geometry is the Brillouin

model of Creedon. Here the self magnetic fields are assumed so strong that electrons flow on equipo-

tenuial surfaces. so that the model does not describe the emission from an electrode. Another model

(Ott et al) des'cribes the electrostatic field in two dimensions. but the electron flow in one dimension.

Finally we note an approximate two dimensional analytic model of focused electron flow in diodes

(Goldstein et al).

Section 11 describes four one dimensional modeis for electron flow in diodes. The first. two are

planar, relativistic but either with or without seif magnetic fields. The second two are spherical, with no

self magnetic fields, and either non-relativistic on supe'rreiativistic. We rely mostly on the planar

models since they are valid over the full energy range. However there are still important geometric

effects, and the second two models shed light on them. Principally it is shown in Section III that the

space charge limited current is larger in realistic geometry than in the analogous planar configuration.

Section IV reviews the electrode synthesis technique and derives electrodes for a relativistic beam in a

planar configuration. Finally, Section V derives a final electrode configuration using the

Herrmannsfeldt code. The goal is to achieve a high quality beam for use in. a gyrotron oscillator at 35

Gilz and with power in the hundred megawatt range. Accordingly, the diode has a magnetic field of

1.8 - 2.0 kG and produces a 600 kV, 2 kA beam with a M v,/v- =0.2. In the diode region and

M- 8
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sub.equent drift space, the beam has virtually no variation in a. To achieve the higher values of a. the

magnetic field must be compressed to about 25 kG. In doing so, some variation in a across the beam

is induced, although the beam quality is more than sufficient for efficient oscillator operation.

* Another important consideration is the use of focusing electrodes and emitting regions for high

power operation. If the electro field is too high, everything will ultimately emit, including the focusing

electrodes. The key is to keep the field sufficiently low and the emissivity of the emitter sufficiently

high. For instance, it has been determined (Kirkpatrick et al., 1984) that with focusing electrodes or

anodized aluminium and emitting surfaces of reactor/graphite, kilo amp current could be generated for

30 nsec and that the focusing electrodes do not emit for fields as high as 600 kVi'cm.

V
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I. One Dimensional Models

In this section we describe three separate one dimensional models which should be of use in the

design of a wide class of diodes. These models are, respectively, a relativistic slab model, a conical

nonrelativistie model, and a conical superrelativistic model. No fully relativistic one dimensional coni-

cal model was found. We have used the slab relativistic mode; to explore a large area or parameter

space for interesting design candidates. This model is used in the electrode synthesis described in Sec-

tion IV. The conical models were used to estimate geometric corrections to the slab designs.

specifically the current required to obtain space charge limited flow.

A. Slab Relativistic Model

The slab diode is completely described by three constants or motion for every particle. nameiv

energy and the conical momenta P, and P. Here. the cathode is the plane z: =0 and the anode is at

z =L. Here z corresponds length along the cathode face in the P,e plane. The magnetic field B is in.

the r- z plane, so y corresponds to the azimuthal angle 4 in the more conventional cylindrically sym-

-t metric diode. For any particle which leaves the cathode z =0, these constants of motion are

AE =(-y- l)mc 2 + q , (Z), (1)
qB, o qE.0

,,Py ' my, - -- ( z o) "'"-A( Z) (2)
C C

" qB,.
' "~ ~ v. =' y + y-( - yo) "+  A.:z) (3)

, where y0. z0 give the initial position of the particle. Constants have been added so that these are zero

- on the cathode z =0 if ,,AA. are also zero there. Because of y,z symmetry only one orbit needs to

be considered; without loss of generality it can bave yo =zo =0. From Eqs. (I)-(3) and the definition

of we find

r -, ( ,Y,') (4)

vy (a,:) - - mcy ( Z) (5)

- v.(z, ) = L. A(x), (6)

(z) - mcy(z)

~M- 10
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where (1, =qB, nc and -(z =1 - q4.mc. from (I). Since v, is chosen to be positive in (141.

these equations will apply only up to the first turning point in z. This is exactly the condition that no

orbits cross.

If a steady source of current Jo is supplied at the cathode, an equilibrium state will be set up with

J, = jo (by V • j =0) with density

)0
qvz

• Thus. Poisson's and Ampere's equations give, respectively,

d2 -0 4 ,rj( (7)
,2 v r

d2 A. 4wjov. (8)
z2 . v, C

d"AY 4rijo vYd-- -- (gdz2"  ve I

dy/dz =v.v,. O)

* dz/dz =v:.iv,. (il

The equations (7)-( 11) can be integrated using z as the independent variable as an initial value prob-

iem from z =0. The initial conditions imposed are y =0. z =0. 4 =O.Ay =A: =0. (all by conven-

tion), =0 (space charge limited flod)* dA. /d =0 (B, =0, corresponding to B0 =0 in the

actual diode.) and d.41 /dz =B:O. The current jo can be adjusted to provide any positive potential at a

given anode - cathode gap spacing, O(L) =V. For B:o =0, these equations give

y =z =A =A: =0, and the Langmuir-Child solution 4' -.- JJ3  A typical numerical solution of

the equation for nonzero B. is shown in Fig. I. Time does not occur explicitly in the equations we

integrate. Nevertheless, the best results are obtained by using a uniform time step, i.e., with

d, =vdt. This gives the best resolution of the gyro-motion in the magnetic field and the singular

behavior near the cathode, where the solution approximates Langmuir-Child, even with B, p0.

An equilibrium fully symmetric with respect to y and z is obtained if Jo is a constant. The syn-

* thesis discussed in section IV provides electrode shapes external to the electron beam such that the

beam will remain symmetric with respect to y and z if Jo is uniform in a finite emitting region in

D M- 11



:.0 ., ( but c < y< c. corresponding to 0 < o' < 27-.' However, it is not possioe to

obtain the correct A: by such a method, because B, is proportional to the current I. within the orbit

(tee Fig. I.) For v > 0 this is zero for the bottom orbit (from the right end of the emitting region)

and increases for orbits emitted further to the left, but can never be equal to the value obtained in the

pure slab limit, because some current is thrown out. Alternatively, we could note that with a finite

emitting region. B. becomes a function of z and z. In order to bracket the exact solution for a planar

.* diode with a finite emitting region, we integrated the equations (7)-( 11) with the full A:(z) and again

with A:(z) =0. The first mode! is appropriate when the emitting region of length L, is very long or

for orbito near the top of the beam before they have traveled a distance Az equal to Le The second

- model is appropriate for L, - 0 or for orbits near the bottom of the beam. Results obtained from

these models will be discussed in Sec. III. The effect of a finite emitting regio:. on A ,. B. and. for that

" matter, the effect of j upon B. for the L, oo casc. is negligible for the dcsigns we study becau. e of

a strong applied B:.

B. Conical .onrelativistic Model

A scaling that reduces the nonrelativistic conical diode problem to one dimension is well knowr,

but we include a brief presentation for completeness. We use spherical coordinates (,,0.) to describe

a diode with cathode at 0 =0. anode at 0 =01, and 0 symmetrv. The relevant equations for

B: =Bo =const. and B0 =0 (i.e.. ignoring self j
0 

and j.) are conservation of energy

m 2 v+ q * (r,O) =0, (12)2

conservation of P.

(a + '. a mr sin v. + _2 sin 2 e=0, (13)

(V 49 rrs I n + 2c

and the r component of the equation of motion

(v, .7 v), _._q[ ( a v, Bosin 0 (V, - +7 ) 14

Poisson's equation and 7 J =0 give

a2 20. *
0- ' sin 0 4r (15)

r Or r2 sin 0 0

M- 12
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4.-

r., 1 n (sin 0 n v =0.1)4q~ r* (r nb,) - (16)
r sin 0 dO

These equations can be reduced to a one-dimensional form, with 0 the independent variable, by assum-

ing the scaling

4b 0 r2 4,0 (0), (17a)

v= .0(, (17b)

n =no(). (17c)

Equations k 13 , (14 then reduce to

m vri(8) - q 40 (0) 0, (181., 2

vo QI'/d 8 + 2 v,o Q(8) =0, (19)

* where

Q(O) =sin 8 v. 0 -"o sin 2 a/2 (20)

and (o =q Bo,'mc. Equation (14) gives

d .v,0

V 0o , + V,-o.- Vjo- Vgo
vet (8(0 ifl8d'r' -q [ 2,0,o(0)- v"t,(0 Bo sin~l . (21)

From (151 and (16) we obtain

1 d in 0 6 o(0) - 47rq no(0), (22)
sin 0 d dO J

I d [in 0 no(0) vo(9)]+ 3 no(#) V,o (8) =0. (23)
sin 0d

We integrate (19), (21), and (22) with respect to 6 to obtain v.0 (0), v,o, and 4), respeceively, in addi-

tion to finding r(O), 6(8) by

d V,.0

(Inr) = v, (24)

dO' V0o (25)
dO sin 0 v#0

Finally, no and v# are obtained from (23) and (18).

Note that self magnetic fields cannot be incorporated into these similarity solutions since the
",

dynamical equations (13), (14) require B = [ (0), j ---q v r Jo () [i.e., (17b) and (17c)], which

cannot satisfy 7 xB =47r j/e.
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C. Conical Superrmlauvistic Limit

In the limit of superrelativistic electron energies, -y >> 1. Eqs. ( 12)-(14) are replaced by

a me , q 4 =0, (26)

v, T -r O( r sin 0 p., - A.I 0O (27)

(v 7P)---q ( - 0 ' r V, Bo- V.oB,] 2

(V V P), =1. ( - (28)

where p=- m v and - =(l I- pmr c-)'- becomes -7 = Ip:imc. i.e., vI =c. Equauons (15). (16)

are unchanged. One dimensional equations in 0 are obtained in this limit by the following scaling

4 = r 4, (0) (29a)

P =r Po () (29b)

v =V 0 () (29c)

r -o(0)k (29d)

B =Bo (0) (29e)

.A =r Ao (0) (29f)

n =no (0)/r. (29g)

Note that nv and v X B both scale as 1i/r. so that self fields can be included in these solutions. Equa-

tions (26), (27) give

to(8) me2  + q 4to (9) = 0, (30)

* dQ
-o- + 2 poQ =0, (31)

with

Q(O) = sin 0 Po + q A 0 (0)/c. (32)

Equations (28), (15) and (16) give

dpo
Vpo - + Vro Pro - V#oP 0 - Voo Peo

-=q -( + (33)

sin0 d in 0 "*-i + = - 47rq no, (34)

I d (sin0 no V.o) + no v,0 =0. (35)"-'sin 0 dO 0

The 0 component of Ampere's law gives B0o = - noq vio, and the r component

M-14

,:.. .... ".'.."........ ..,V. .. ,... -.... "..,.....'....................'..•.. --...... .. .'....._, ..........-.....'............"



- ti -

S-- (sin 0 Boo) =no q voSin 0 O

is consistent by (35). The o component or Ampere's law gives

Boo = - 2 Aoo, (36a)

d(sin -A) 2Aoo - noq voo. (36b)
dO [sin8 dO

Equations (30)-(36), together with (21) and (25) can be integrated as initial value equations from

0 =00 as in the planar and nonrelativistic conical diode cases. When the self magnetic fields are negli-

gible. B0o =0, B,00- - 2 A00  - Bo sin 0 and (36b) is not used

M-15
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III. Applications of One Dimensional Models

In this section we describe how the one dimensional models of Sec. II are used in diode design.

The slab relativistic model has been used primarily to scan the parameter space for reasonable design

candidates. Electrode synthesis has been applied to the promising designs, with further electrode shap-

ing required both for final tuning of the design and for other practical considerations. This model has

been used to shed light on certain as-cts of the des-ign. for example, the dependence of the result, on

the self B,. The conical models have been used to clarify th.e geometric effects, specifically the varia-

tion of the space charge limited current obtained by the Hermansreldt code from the value predicted by

the slab model. Let us ssume that we want to produce a beam with c a -1 in an interaction

region of radius r! =1.4cm, with a field B.! =24 kg. Assuming that the beam is adiabatic in the drift

region between the diode and the interaction region. i.e.,

B, 1 - 2,ao

B -, = - l. -

and

S , (B /'B,) 1  
, (38)

and taking a, =0.2, we obtain B, = 1.85kg, r, =5i.0.5 cm.

We have used the slab relativistic model to compute a at the anode as a function of the angle X,

between the normal to the cathode and the externally imposed magnetic fleid, i.e., , =tan I

(B:o/Bo). The gap voltage was * =600 kV, and the current density jo was 70 A/cm 2. The results,

with and without self Bj(z), are shown in Fig. 3. Without By, Xo =30 'gives a, =0.2, whereas with

B, Xo =40 'is correct. This indicates that self B, plays an important role in determining a, although it

has little influence on the gap spacing d. Since B, (or B.) is zero for the bottom orbit, and since B,

(B,) can be near its limiting one dimensional value for orbits near the top, this indicates that electrode

synthesis may not by itself produce a uniform a across the beam. We will return to this issue in Sec.

V. We also show, in Fig. 4, the dependence of a and d upon o, for X0 =40 0 =600 kV, including

self B,(z). It is clear that both or these quantities depend critically upon jo.

M- 16
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As. we -hall discuss further, the llermann,.feldt code in this parameter range shows space charge

limited flow at 20-50% higher current than that indicated by the slab model. In order to understand this

discrepancy and have more confidence in our results, we have investigated this effect with the nonrela-

tivistic and superrelativistie conical models. We use these models in the following manner: we fix the

cathode angle 0n (see Fig. 2), a potential *, a gap spacing d, a field B:o, and a radius R where a ray is

to be limited. We adjust j0 until the potential equals 41 when the gap spacing is d. Then we vary R.

The results for different R values are not obtainable from the scalings (17) or (29) because we do not

allow 4 and d to scale appropriately with R'40 - R.,d - R from (17) or4 - R. d - R from (29)..

For a case with 0 = 1.07 MV. B: =2.4kg, d =3cm. 00 = 158 : we obtain the results shown in Fig. 5.

For both the nonrelativistic and superrelativistic models, the results fit curves of the form jo =jo (o)

* -A,.'R. and the limiting value jo(oo) agrees with slab nonrelativistic or slab superrelativistic models.

For the cases considered. Jo for R =5 cm is 20 to 50% higher than for the slab model, in agreement

with the results obtained using the llermannsfeldt code.

9
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IV Synthesis Techniques for Deternining EDectrode Shapes

- "The electrode synthesis technique is a method of calculating electrode shapes which provide lam-

inar flow for a beam with self electric fields. The method was initially formulated by Harker for planar

* and axially symmetric cases o space-charge limited non-relativistic flow. The method was extended to

- temperature-limited MIG type guns by Manuilov and Tsimring; The general approac.h involves finding

a set or ordinary differential equations to represent the beam flow. These equations are used to obtain

the boundary conditions for integrating Laplace's equations in the region outsides the beam. A

difficulty in the direct inplementation or this procedure is that the present problem involves Cauchy

boundary conditions on an open surface and the solution of Laplace's equation are unstable for these

conditions. An elegant method has been developed by Harker which reformulates the mathematical

problem in a way which yields stable numerical solutions. This section outlines the synthesis technique

for planar geometry and discusses an application for the case or planar relativistic flow.

The synthesis problem consists of finding the electrostatic potential distribution in a region exter-

nal to a finite laminar flow beam. The. potential satisfies Laplace's equation outside the beam o.r

equivalently, the electrostatic field satisfies the Maxwell divergence and curl equation

aE,  E. =0 (39)
Tz ---5 7z- (9

--E --. =0 (40)
az 9z

with the boundary conditions

E = E.,E, =-E,. (41)

on the outermost trajectory of the beam.

Equations (39) and (40) form a system of elliptic partial differential equations whose solutions are

unstable for the present case of an open surface and Cauchy boundary conditions. However, a stable

solution can be obtained by the following approach due to Harker.

First, the beam edge trajectory (z, =z,(t), z, = z,(t)), is converted into the straight line u =0

of the (t,u) plane by means o the conformal transformation

M- 18
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I

5.4. z - iz =:,(t - i x - ,(t -. (42)

This can be done because the equations for the beam trajctory can be expressed in the complex plane

by analytic continuation. Since coordinates related by a conformal transformation satisfy the Cauchy-

Riemann conditions,

* a: az (43)

az a
'a--": - a8" (4)

Equations (39) and (40) can be expressed in the form

aE, aEc
-a --(45 )

aE. aE,
a-- at (46)

These equations. together with

a¢O az aza = - E - E. (47)
auat -at

enable ca.culation of the potenual S in the transformed plane (t,u).

The second step is the transformation of the elliptic system. Eqs. (45) and (46) in the (t.p)

plane, by means of the analytic continuation

t --.- q (48)

For fixed p this leads to the hyperbolic system in the (q.u) plane:

aE, aE
= (49)au aq

aE , i , (50)a7 - a¢ 5o

az i az

a-u a (51)
L az iaza-- = -- (52)

au aq
Equations (49) and (52) have a stable solution for the present boundary conditions.

The procedure for obtaining the equipotentials is illustrated in Fig. 6. It involves solving the sys-

tem (49) and (52) in triangular regions such as ABC in Fig. 6. To obtain the solution for this region it

is sujfficient to specify Caucwhy boundary conditions on the line AB. These conditions are the analytic

M- 19
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continulaton of Eq. I I) and are formed by integratng the flow equations along the real axis from

t =0 to t =PD and then along the line AB by means of the substitution

d .d"- -- -, -- (53)

Solving Eqs. (49)-(52) in the region ABC by a finite difference method allows the potential to be

obtained on the line CD. the only region of physical significance. By translating the triangle ABC to

other values of p. the potential distribution over the entire single valued region of the plane

(p.u) =(t.u) can be found. Applying the transformation (42) yields the equipotential surfaces as a

function of z and z.

Electrodes shapes calculated by the synthesis technique are shown in Fig. 7 for the planar rela-

tivistic flow model discussed in section 11 A. The synthesis calculation was based on a current density

of 70 A, cm". an angle of 40" between the cathode normal and the external magnetic field, and an

externa magnetic held by 1.85 kG. The anode-cathode gap voltage is 600 kV. Upper beam edge Era-

-jctories are shown with and without the approximation self magnetic field effect included. As shown

the effect is quite small for the present parameters and there is negligible effect on the calculated elec-

trodes.
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V. Final Diode Design

The final design for the diode, in several configurations, was achieved by means o the electron

trajectory (|lermannsreldt) code. The electrodes round by synthesis generally provide a beam in which

a varies by t .5o from top to bottom. This variation, which is not present in the slab model, is due

to geometric effects. One o these effects is the fact that the bottom orbit has B, =0, whereas the top

orbit has a value of B. '%hich can be nearly equal to the one-dimensiona value (for rat beamsi. This

effect has been studied in Sec. III and found to provide just such a variation in a.

Our first design is for a 600 kV. 2 kA gun which can use a minimal amount of focussing. depend-

ing upon intercepting the outer two thirds of the beam at the anode. This extra charge (and current)

takes the place of some of the focussing. A successful design of this type is shown in Fig. 8. The

cathode face is at 10 °. which we found in Sec. III gives - =0.2 with B:0 = 1.85 kg. The current den-

sitv jo .70A 'cm in the slab model gives, for a cathode surface of radius 5 cm and emitting length 2.1

O cm. 4.6 k.%. Because of geometric effects as discussed in Sec. 111. we used 6.0 kA. corresponding to a

perveance k =13 micropervs. This is near the space charge limit: for k Z15, the results begin to

show serious signs o lack of convergence usually associated with approaching the space charge limit at

* some point on the cathode face. The results show a very flat a = 0.2, ± 10% and very little evidence

of orbit crossing. It is possible to reshape the electrodes to have less focussing in order to decrease the

electric fields on the parts or the cathode where we wish to inhibit emission. In that case a would not

be as fiat across the whole 6 kA beam, but that is of no consequence. However, it appears that the

electric fields in the design in Fig. 6 are below 300 kV/cm. and the surfaces of anodized aluminium on

the focusing electrodes should inhibit emission tor at least 50 as.

In Fig. 9 we show a design with an aperture in the anode allowing roughly the middle third of the

beam, and a short drift region bounded by anode surfaces. There is very little orbit crossing still, and a

is quite flat in the central third of the beam. (For rays intercepted by the anode, the value shown for a

is the value at interception.) However, a is considerably higher now, in the range 0.36 < a < 0.41.

This is apparently due to a combination or effects, including the space charge or the beam and the finite
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" .:,r?,,or r;|liu, of the ort;,

An alternate design for a 600 kV, 2 kA diode is shown in Fig 10. here, uniformity of the beam

is achieved by focussing electrodes alone: all of the beam is allowed to pass through the aperture in the

anode. The electrode shapeb are nearly identical to those of the design in Figs. 8 and 9, except that the

emitting region is one third the length, or 7mm; the perveance is. correspondingly, k = 4 .3 1A micro-

perus and the magnetic field i.i a nearly uniform 1.85 kg. Again, the electrode shapes are somewhat

different from those obutined by synthesis, for geometric reasons. and the maximum electric field is or

order 300 kVicm. Figure 10 shows essentially no orbit crossing in the diode region and a very uniform

a =0.19±5%" across the beam at the anode and at the end or the drift region. A combination of coils

produce a quite uniform 2.2 kg magnetic field in the diode region that increases to 20 kg at the rar end

of the compression region. The average value of a at the far end of the compression region agrees well

with the aliabatic value a, =1.2 based on a, =0.22. B, =2.2 kg at the beginning of the compression

region and B! =2.9kg at the end. However. there is much more variation in a across the beam than

adiabatic theory predicts: from (371 one can show

din af 2 (39)
din a, 1"" ?( )

which shows that the relative -variation in a1 should only be twice the reiative variation in a, for

a, < <1. This is a common effect in this type of simulation and is apparently due to space charge

effects that become more pronounced as the beam slows up. The results shown in Fig. 10 are with 25

rays; results with 15 rays give very similar results, including the variation of a across the beam.

Tests have been made to determine the sensitivity of the diode performance to variations in B,

and the potential. For these tests, a 600 kV, 2 kA diode with B. = 1.85 kg was used. These tests are

important in order to be able to tune an actual device. In addition, it is important to know whether

variation of the voltage during the pulse will have deleterious effects. The nominal diode design here

has a =0.25 across the beam. Dropping the potential to 450 kV causes the beam to enter the aperture

in the anode less than a centimeter below the point where a 600 kV beam enters, so that it appears that

a pulse with 45) kV < * < 600 kV will produce a beam that can still fit through the anode aperture.
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1 urthcrmnore, o is nearly unchanged. These resultv are not sensitive to the penrvearce. For B, ten ;er-

cent below the nominal value, i.e., 1.67 kg, the beam begins to scrape the top of the drift cavity, and a

is larger, in the range 0.32 < a < 0.38. For B: twenty percent above, i.e., B: =2.22 kg has a =: .20.

Thus it appears that a scales as I/B:, so that varying B: may be an effective way to obtain a desired a

in this type of diode.

M

M- 23



Acknowlegnient

This work was supported by the Office of NavaJ Research, by the Department of Energy through a

contract with the Lawrence Livermore Laboratory, and by the Defense Nuclear Agency.

M- 24



Reference

Creedon J.M. 1975. RelaUvistic Brillouin Flow in the High P/gamma Diode . Appl. Phys 46 2916

*Dryden, V.W. 1962, Exact solutions for space-charge flow in spherical coordinates with application

to magnetron injection guns. J. Appl. Phys., 33, 3118-3124.

Fliflet. A.W.. A.J. l)udas. M.E. Read and J.M. Baind 1982. Use of Electrode Synthesis Tech-

niques to Design MIG-Type Guns for High Power Gyrotrons. Int J. Electronics, 53. 743

Goldstein, S., R.C. Davidson. J.G. Siambi and R. Lee 1974, Focused Flow Model of Relativistic

Diodes. Phys Rev Lett, 33. 1471

Goldstein.k S.A. 1976. Magnetic Field Effect- on the Emission Law of Electron Current from

Cathodes. J. Appl Phys., 47. 894

Harker. K.J. 1960 a. Determination of electrode shapes for axially symmetric electron. guns. J.

Appl. Phys., 31. 2165-2170; 1960 b, Electrode design for analytical design of axially symmetrical

ion guns. Internal Memorandum, Microwave Laboratory, Stanford University, Report No. 1013,0

NASA CR-54052.

Herrmannsfeldt. W.B., 1979, Electron trajectory program. SLAC-Report-226, Stanford Linear

46; Accelerator Center, Stanford, California.

Kirkpatrick, D.A., R.E. Shefer and C. Bekefi, 1984, High Brightness Electrostatically Focused

Emission Electron Gun for Free Electron Laser Applications. MIT Plasma Fusion Center preprint

PFC/JA-84-40.

Kirstein, P.T., G.S. Kino, W.E. Water 1967 Space Charge Flow, McGraw-Hill, New York

Ott, E. T.M. Antonsen, R.V. Lovelace 1977 Theory of Foilless Diode Generation of Intense Rela-

tivistic Electron Beams. Phys. Fluids, 20, 1180

M-25

, , - " , .. . .. - .A .



Figure Captions

Fig. I - Geometry for the slab relativistic diode model. For the bottom orbit. B is zero. For the top

orbit, By is the value obtained by the slab model for elect'ons to the left of the dashed line. To the

right, B, is less than the slab model value.

Fig. 2 - Geometry of conical diode. For a finitw emitting region. the same comments hold for self B.

The angle z of Fig. I corresponds to 00 - 7r 2.

Fig. 3 - Dependence of a = ipt/P : and the gap spacing d upon zo for the slab relativistic model.

Fig. 4 - Dependence of a and d upon jo for the slab model.

Fig. 5 - Current density j' as a function of R for two conical models.

Fig. 6 - Schematic of the solution of Laplare's equation in the complex plane..

Fig. 7 - Electrode shapes calculated by synthesis technique.

Fig. 8 - A 600 kV. 2 kA diode design with the outer two thirds of a 6 kA beam to be intercepted by

the anode. In (a) are equipotentials and actual trajectories integrated by the code: in (b) is shown a vs

ray number, from the bottom of the beam to the top, for the electrons when they hit the anode.

Fig. 9 - Same diode as in Fig. 6 but with an aperture in the anode and a drift region.

Fig. 10 - (a) Diode design with 600 kV. 2 kA, where the beam uniformity is provided by focussing

electrodes alone: (b) a at the aperture in the anode: (c) a at the end of the drift region; (d) orbits in

the compression region, (e) a at the end of the compression region.
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We study the behavior of a free electron laser in the high pin relme. and the conditions for the emertence of a col-
lecuve instabiliy in the electron bearn-undulator4leld system. Our equations, in the appropriate imit, yield the trndioonal
smal gain formula. In the nonLinear relime, numerical solutions of the coupled equations of motion support the correct-

4P ness of our proposed empirical estmnator for the build-up mrae of the pulses, and indicate the existence of opt mum parame-
tets for the producuon of high peak-power radiation.

Studies of the free electron laser (FEL) in the high amplitude approximation for the radiation field as

gain regime have shown that with an appropriate se- done also in earlier developments [9,101. In the re-

ction of the electron density,.detuning and undu- mainder of the paper we shall adopt the following
lator length, the radiation field and the electron notations: z represents the direction of propaption
bunching cani undergo exponential growth as a result of the electron beam and of the electromagnetic
of a collective instability of the electron beam- wave; it also represents the unduiator axis;x andy
,udulator-radiation field system [ 1 -8]. In this pa. are the transverse coordinates; 8 0 denotes the strength
per. we study the conditions for the onset of this in- of the helical magnetic field.and N,) and No the period

* stability using a new secular equation for the charac. length and the number of periods of the undulator.
tenstic complex frequencies of the FEL system. On respectively; the undulator parameter is c z eBoNo/
the basis of these results, we show how one can re- (2-mc2), where mc 2 is the electron rest energy; . is
derive the small-signal gain formula and establish the the wavelength of the radiation field, -y is the elec-
conditions for its validity. We also consider the prob- tron energy in units.of mc 2 , 0. - I is the loncitudinal
lem of the initiation of laser action and of the growth electron velocity and *U ic=/h the amplitude of the
of the radiation field from noise, and propose a for- transverse velocity; the electron phase, 0, relative to
mula to evaluate the lethargy (build-up) time of the that of the electromagnetic wave, is connected to z
first pulse. Finally, we study the nonlinear regime of and r by the relation € a 2'z/X0 + 2x(z - cr)X; the
the FEL by numerical methods and obtain results resonant energy -R is related to )9. X and K by -, 2

that suggest the existence of an optimum efficiency X0(1 + X 2)/2,, and, finally, the undulator frequency
of the device. -o is gven by w0 = 2 c r/ 0 .

In the derivation of our working equations we se- With these notations, the FEL working equations
lect the phase and the energy as the basic electron can be written as (9,101
variables, and assume the slowly varying phase and / *o(l - - 27f)Y(

* On leave from the University of Milano, via Celoria 16. ecit
M[ilano,Italy. [a exp(iO/) +.c. 1  (2)

0 030401 8/8d/S03.00 0 Elsevier Science Publishers B.V. 373
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where to is the initial energy, and P, the classical
-, = d ,- -i/), (3) electron radius, and the so-called Pierce parameter

wherej labels the th electron in the beam ( a 1,2, P ( X(70/TR O (9)
..., -aith S e the total number of electrons); the aver- Furthermore, we introduce the quantity
2p 1..) is carried out over all electrons in a beam
,., ae oilength A at the position z - (0,)cr, where o - woo - (10)

0-) is the average longudinal velocity. The remain- and rescale the time variable as follows:
in1 parameters have the following meaning: ne is the'
dectron beam longitudinal density at position z - r = 2c0(TR/ Y) 21

(3L)cr, M is an effective beam transverse cross section In terms of the new scaled variables
- diestmg the overlap of the beam with the radiation

,leld whom amplitude E0 and phase 00 have been Of - ot' , 1(P0). (12;

c ombiud in the complex amplitude a - iE0 exp(i 00). A ma exp(iot)/(41rmc2 .OnOp 2)l/2
h is fawortant to stress that in this discussion - is not
restktad to be approximately equal to the resonant the nonlinear equations of motion (5)-(7) take the
rlItM -R, unlike earlier treatments of this problem. form
For the purpose of our subsequent analysis, it is con- (d/d) 4,/ (1/2p)(l - lp2r,) (13)
"ei w nt to rewrite eqs. (1.3) using the variables

:-(<O)cr, t'=r, (4) (dldr)i = -(I/p)[(A/ir) exp0i4,) + c.c.] , (14)

with the" reait: dA/dr - i8A + (l/p)(e-iL/f). (15)
O "ar')O, W OO - A r ). (5)

R • Note that in terms of eqs. (13)-(15), the dynamics

=ecx + . (6) of the FEL is controlled by only two parameters, the.-. . .2j c2 p-/)Pierce parameter p (eq. (9)) and 8 2 = A lp, where A is

the usual detuning (70 - yi)/(2-1R)" Because we ne-
[(1 ) . L a - 2,'ne(z )  (7) glect space-charge forces, we shall assume in the fol-lowing that p is sufficiently smaller than unity. It is
The prmagation term (1 - (i,.))a/a:' in eq. (7) is im- also worth noting that eqs. (13)-(15) are consistent
ortt to describe the evolution of the pulse in the with the conservation law

FEL, especially when the accumulated path differ- L -1A 1 2 + (r) constant, (16)
e .e AL goLph - Lei - (c - u)tint between the pho.

zoas and the electrons during an" interaction time is or also
compeable to the length of the electron bunch itself. L a mc2n0 (.) E/4r constant, (16)
Noe that the path difference AL can also be ex- 0

res2ed in the form cr:at(l - (z)) = AV0(l- -(Az)) U which can be readily recognized as the conservation
Yr In this paper, we only consider situations where of energy for the electron beam-radiation field sys-
zhe lngth of the electron bunch is sufficiently larger tern. The method devised to analyze the stability of
than,V; thus, we neglect the propagation term and the system is based on the procedure suggested in ref.
.s= the local electron density njz') to be con. [8]. The equations are linearized around the equilib.

rium state A 0 = o, O/ I p, (exp(-ino)) a 0 and
The iner stability analysis of eqs. (5)-(7) is great- perturbed by letting A a a, Il =(Il)(I + i ) and

Saided by the introduction of a suitable set of col- k;i a *0t + 8 i. The linearlized equations form the
lective variables [8]. For this purpose, we first intro, basis for a closed form linear system of equations for
d=:c the relativistic plasma frequency the collective variables

(8) U<8*xp(iiti)),(17)

374.
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b :" (I/~lq ep(-i0)),(18)/ I

and for the rild perturbation a. These take the form

I±dry (19) U.

'.Id --r --4, (20) ",O

ia/dr -ia - Lx-y. (21)

N4ontrivial solutions with a tine dependence of type
exp(iAr) exst if and only if X is a solution of the
-haracteristic equation

3 -- N2 +,N + I - . (22)

* The remlts of earlier analyses (1-81 can be recovered
by setting formally p - 0 in eq. (22). Clearly, expo-
nential growths, and thus, unstable behavior, results u a ar,, a e
if the cubic equatiou (22) has one real and two com-
plex conjugate roots. In this case, the imaginary part Fig. 2. The behavior of thr. e ,gnvalues of the cular equa.-
of the eigenvalue measured the rate of growth of the don as a function of the deuanig parameter a and for Pa"
unstable solution. The instability condition can be 0. 1. The vertical axis labels both the real and imaonary panI

The real parts have been scaled by a factor of 1- to fit the
easily derived from eq. (22): in terms of the param- dfivay. For a miienly positivevalue of 8 (i.e., & > 6 thr
eters A and 6 it takes the form (fig. 1) the eigenvalues are real (curves c. d, e). At threshold, two of

the real eigenvalues depneraut into one, while, for the same
P --r-> 0 " (23) value o 6. the umaginary pan (curves b. b') become differ-

ent from zero. The real pan of the complex conjugate eien.
The typical behavior of the eigenvalues of eq. (22) a values for 8 < 8 th, is labelled by a.
a function of deuning is shown in fig. 2. The eigen-
values are real when 8 exceeds a certain threshold
value that depends on p according to eq. (23), while ficiently large values of 1I I. In this limit, the eigen-
two of the eigenvalues form a complex conjugate values take the approximate form
paiwhen 8 ,z 1/81/2 6>0

The srmal signal gain formula emerges in a natural ' >
way from our analysis in the limit p -O, and for suf- X, -( - 15), N2.3 Itl/l/12. 8<0, (24)

as one can confirm qualitatively from fig. 2. The out-
put field A(r) in the linear regime can be calculated as
a linear superposition of elementary exponential func -
tions whose coefficients are to be fixed from the ii-

------------------ tial conditions. A lengthy, but straightforward calcu-
W lation yields the folowing expressions for the small
Opial pin.
GM [14r)12 _L4 0 11 1/4o12

I - (4/6 3)(1 - cos r cOS rV
Fil. 1. Last ty boundary ia the (.,8 ) plane. For 6 < A.

Sthe soluioM of eqs. (13)-(1) am unstable for all values of
p*. For olectu values of p (e1., r in the igur) unsable be- - 312 un5rgnr/ / ), 5>0.
havior occurs for S <6 d.
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G f4iS )(l - cosSr coih/v i 4

-:o, ,6 <0o. (25) JAI2
In order to make contact with the usual small-signal
-1 foMsU, it is not enouga to require that I I be
sufficiently larger than unity. but one also must im-
pos the conditoar 'WrISI A 1. In this case. eq. (25)
becomes

G Z (4 /6)(1 - cos 6r-- Sr snS) (26) 0 10 20

which, in fact, agrees with the standard expresson Fig. 4. Output iau.siy tAi 1 Y sw tim above threshold.

for G. The parumn u d ue atis MinuLaoa an a a 0.0021. a
In spite of the fact that the equations of motion 1.86. no a 16.

of the hu. ae nonlinear, some aspects of this prob-
lem can be handled accmurately by analytic mems. The
evolution below threshold (6 > 8thr) is governed by is entirely different, and is shown in fig. 4 for the
the linear approximation. In this regime, the eigen- case of zero initial field and an initial bunching pa.
values are real (see fig. 2) and the output field dis- rameter l(exp(-i;,)), snall, but different from zero.
pLi-ys small amplitude oscillations when plotted as a Under unstable conditions. fluctuations in the elec-
unction of tine. On vazying 8, beat patterns or more trons injection velocities, or the lack of uniformity

compicated-looking modulation effects can be ob- in the initial distribution of the electron phase van-
served, whose origin can be understood entirely in ables, or the presence of an initial field wl trigger
terms of the eigenvalues of the linearized problem. the growth of a sipal. The smal will then grow to a

- -... A representative example is shown in fig. 3. It may be peak value after which it oscillates. This beha vor is
worth mentioning that while the trace in fig. 3 has very general and is independent of the initial tnrgr.
been obtained by the appropriate superposition of ing mechanism as long as ths perturbation is small.
ex-zonential functions, the exact solution of eqs. This nonlinear regine requires numencal integration
(1.3)-(15) is indistinguishable on the scale of this of the full equations of motion. This we have done
.raph, for a number of values of p and S.

The system evolution above threshold (5 < thr) Because of the nature of the riggering mechanisn,
intuitively, one would expect that the tune required
for the initial pulse to build up (lethargy tne) should

2X16 be a fairly sensitive function of the magrnitude of the
initial fluctuation. We have examined the dependence

of the build up time of the irst pulse on the initial
value of the bunching parmeter, and verified that (a)

2 a significant fraction of the build up procese is well
A described by the linearized equations; and (b) the ar-

rival time of the first peak is well described by the
formula:

-... p ak = - (Ifl rA ) in 1(xP(- i 0)1 + I . (27)
0 20 T' 4004 A test of this equation is provided in fig. 5, where we

F" 3. Output intsiy 1412 for a- 0.01 ands .4.0. The have plotted the arrival time of the first pulse calcu.
etpnvalesw of dr Iinsaod equations.- -0.S 19, 0.623, lated from the nonlinear equations of motion (13)-
3.066. The modulation Is due to the beat of te difTerent ex- (IS), as a function of the initial buncing parameter
poneadl manrs in the lu io. I(exp(-io))l. One aspect of considerable interest for

376
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the purpose of optimizing the system's parameters is
the existence of a maximum peak power output as a
function of p and 6. We have verified that while the
maximum growth rate is obtained for6 a 0, the
maximum peak amplitude of the first pulse occurs
for6 as6h, . T we have scanned the (,6) plane
in the neighborhood of, but above, the threshold line

, and forA o - 0, and reconed the peak output intensity
"pllax as a function of p (fig. 6). Notice that it follows
from eq. (16) that plA 2 = ((-f - vo)/ho), so that

pL412 gives the energy transfer from the electrons to
the radiation. The scatter of the points is almost cer-

, o96 tainly due to the slight variations of the conditions
from run to run. The solid lin, which is only a quali-

Fit .SThe 4 doe oi the first peak Oethaa time) is tative average through the points, suggests the exis.-
potted as a funh ot loph of te minital bunch- tence of an optimum gain-deruning condition such
Lad paruneter (40u). The aiid ciuam coresponds to eq. that the efficiency of the .system is maximum for
:).. h, 0operation just above threshold. It is clear that in the

presence of efficiencies as large as, in principle, 40%,
the old approximate treatments [ 1-8] in which the

* electron momentum is assumed to vary only by small
amounts cannot be adequate to describe situations
where such large energy exchanges take place between
the electron beam and field. On the other hand, it is
intuitively obvious that for sufficiently small values
of the Pierce parameter, the tiectron energy wil suf-

,-. fer only a limited depletion so that earlier treatments
should be sufficiently accurate.
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FREE ELECTRON LASERS FOR THE XL.V SPECTRAL REGION -

J.B. M)URPHY and C. PELLEGRINI
N ational Si nchrotron iht Soige. Brookhacen .arx,,al Laboraror.-. Cro.. .k ji 973. L'S.q

,.. : ratin of high nnity cri'. . -. t "-rs. -'n fro. . . ,. i .,n. :.._ .. f.ro.
-prai in the high gain oT tLolle.,e insab.tiv r-".',e. In ttus mode of operation. vhich .,-, r..t :equ:re . ..
adiacion field grows exponentially along the undulator unul nonlinear effects bnng on awura::,,n. %e di,,us, ihe ct,r.,i:ivn, :'.at t e
.lcctr,.,n beam and the undulator must satisiv for the coilective wstabiiitv to de'c.op. We prc-ent _= example of an ei:z:-on ,C.raee
r;nz with an undulator in a bypass section %ich -i~es these conditions. We present esti=ma:es oi :he outpu . , .: n'e
expect from uch systems.

I. Introduction 2. Principle of operation

*ll The interest sparked by the operation of the first free In a FEL a re!ati,.-:ic eleu;ron ,eam and art Jlec-
electron User (FEL) by ,Madey and his coUaborators in tromagnettic 'ave tr.erse an -n..r. T,.,e .pi
197.5 has led to some exciting results (1-6]. In the last of the wave and the transverse e!ectron c ;:rent. rducedtwo ,,ears remarkable progress has been made toward by the undulator. cant pr,.uce an energz Eraa:f-r be-

the realization of the FEL as a source of high power. tween the beam kire:- enerz. and .Lne radiau,i ,telU
tunable. cohrent radiation. FEL oscillators and ampli- energy if a s.nchroni.m condition is iifiei. T_,
tiers have been operated at wavelengths va:.nz from condition relates the radiatioa fem .e.: .\. the
the centimeter ip the near ultraviolet and at peak power undulator period ,X... te undult-r ' 3 . .nd
levels up to a hundred megawatts. This ',eaith of experi- strength para~meter K - e.\., B , .-,'rc.. -he he:.rn
mental results is due to researchers at numerous labora- enery y measured i. r:-.t ea,2a unit; '!O:
tones: MSNW, TRW-Stanford. LkSL. LBL-LLNL.

IT. NRL. Columbia-NRL. UC-Santa Barbara. Orsay -. - ( - K: ).
and Frascati. 2 y

The theory of FELs has at the same time reached a Notice that this %%a' !enzrh is also th- Wa eien,2h at
* high lwel of completeness and is in good agreement which the spontaneous radiation from an electron

with the experimental results. As a result of the experi- traversing an undulator is emitted [11.
mental and theoretical progress .,e now hase a good .An important propera.} of the FEL is hat the rcer,.
understanding of the physics and technology of FELs. transfer bet%,een the oeam and the rdia:ion can be
.%hich can be used to design systems operatins in new enhanced by a collectie instabilit% p.cducing an e,-
wavelength regions, like the XUV spectral region. ponential growth of :he radiation [1:;. When this insta-

The possibility of building a FEL operating. at wave- bility becomes important the FEL is said to operate in
IL lengths shorter than 1000 A is a result of the progress the high gain regime. The eistence of this regime is

made in producing high density relativistic e!ectron very important for FEL operation in the XLV reon
beams using electron storage rings. Storage rins spe- where we do not have optical components ."ith uffi-
cially designed for FEL applications and capable of ciently high retlectivizy and small absorption (.
accommodating undulators magnets 5 to 15 m long. Three modes of oceration of an FEL can he consid-
,hnuld offer the possibility of producing coherent radia- ered. In the first mode. self amplified spontaneous
tion do%&n to a few hundred Angstrom ".'it average ermission (SASE,. e ."-uai spontajcous radiation
pussers of the order of watts and peak powers up to emitted by the electrons is amplified: thi, s.stem does
hundreds of megawatts. One such ring is being built at not require any optical components but needs a high
Stanford University (71. while similar rnu are also density electron beam and a rather long undulator (8.1(.
hein3 studied at other laboratories (8.91. In this paper The second mode : :he FEL o.n.-illator: a optical
%%e want to bnefly review the different operation modes cavity is used to retle,:t back and forth the radiation for
of an FEL in the XUV region (sects. 2-4). we will then further amplification b, another ectron bunch: this

I discuss in more detail, the self amplified spontaneous system can get by with a smalier electron beam density
emission mode (sects. 5-9). and a shorter undu!ator but need rmirrors for the cav-

J l6i-90(O/R5,/S0.30 D Elsevier Science Puhli.hers B.. I THEORY
!Niirth-Holland Physics PubliAhing Division,
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o b.ce u'ni'e d :hcnr reflectiti et\
' ' , e on tn;,r ;,. : Of ,- ( he %a%;:; Lnech re.ion belk' 1000 A. the heat

I. ".- third mrx'e or tr.,,ire 'ptical kl'.tron [141. accelerator_- .i.iab~ e to produce the hmin dcn.,it% elec-

. e.nd Licr beam .it thl ,pontaneous radiation trons beams re,.uired to operate in the SASE mode are
•,u'ed to rtdu!ate the beam energy and electron :tora_. i ngs. Existing storage rings. such as the

:on,.. al densit. dItuion leading to the em=i.ion VUV in of the National Snchrotron Lieht Source at

of .z-erent radiation at the hirher harmonics of the Brookhatcn. can provide an a~erage emIttance on the

input lA.-er. Of the three mode. tts is the one requiring order of 0-s mrad. an energy spread of about 10-

* wmc :ea t .tnnzent electron beam parameters. In ad- and a peak current of 60 A at an energy of 750 1MIeV

Ii.cn it does not need optical eiments but on-the other [151. A rin Like this. with straig.ht sections capable of

7%-r-an _ duiwtr .%:,h ransrcz magnetic iccommodc atize undaulaors of 41 to 6 -n.wouk! allow us
* .,. :oie-'nes and producas the smallest coherent radi- to produce coherent radiation in the 1000 . remon.

.:on Po',er. We beieve that it is now possible to design a storage
" ring with an energy of 700) to 10O0 MeV. the same

energy spread and an emittance smaller by an order of
3. FEL -owh rate magnitude than that of the VUV ring, and peak cur-

In all three modes the FEL can be approximately rents in the range of 100 to 200 A. Such a ring would
cna,acterzed by one oararneter. the FEL e-folding enable us to produce radiation in the wavelength range

.envi:h. 4:-. meaured in ndmber of undulator periods of 100 to S4CO A using undulators about 10 m long [7-91.
V "', I Using this ring. the peak radiation power that one

can otin in the SASE mode is on the order ot 10
(2) times the beam peak power. or 100 MW. This pulse

would have a duration 6o about 100 ps and a repetition

,'ere '
2 is the electron beam plasma frequency. de- rate of 10 Hz. for an average radiation power of 0.1 W. -

,n..d Ui terms of the electron density n,,. and energy -. With the samne system operating in the oscillator
mode, one can obtain an aserage output power of the

".. . (3) order of I W. a pulse duration of about 100 p3, and a
repetition rate determined by the ring revolution time to

t. _-einz the classical electron radius. be on the order of a few MHz. and a peak power of

F,,r an oscillator to operate at short wavelength, about 10 kW. For this oscillator it is also possible. by

the:4 he opnca, cav. losses can be on the order of modulating C'e sysrem gain. to reduce the repetition

*- 4r- per round trip. one needs a value of 4i.p-.V on the rate and increase the peak power.
-o,.'er a" 1. i.e. a number of undulator periods For the TOK mode one can expect conversion ef-

ficiencies on the order of 10-6 around the tenth
,- harmonic. so that starting with a 100 MW peak power

In the cast of SASE [12 the value of 4-.pN must be on laser at "C4.0 A one should be able to produce about 100
- e o-rder of 10. W at around :00 A.

In the case of SASE and os,:illator modes the energy In all of these cases the angular distribution of the
transfer from the beam to the radiation field is on the radiation is determined by the electron beam radius, a.

orde: of p. whle in the TOK cae the transfer from the and the radiation wavelength; the characteristic anie is
"zzut laser to the harmonics ts rather small. on the order of X./a. i.e. of a few tenth of milliradians.

T"he expression (2) for the FEL growth rate applies The line ?idth is on the order of the %a--elenzth divided
o'v if t-.%o other conditions on the electron beam are by the elec-ron bunch length. i.e. I06-I0 -5. for the
,,--fied. One is a condition on tEe beam energy spread. oscillator and the TOK mode. For the SASE mode it
uch must be less than p. the second is a condition on depends on the details of the system and is intermediate

me beanm emittance. which must be smaller than the between the oscillator limit and the inverse of the
radi:=on wavelength. If these conditions are not satis- number of peridi in the undulator. i.e. b 10. een 10- '

iitd tze radiation growth rate decreases and the output and 10".
!_-z- ;o3wer is reduced CS1.

For wavelengths in the millimeter region and elc-
ton ence.1y of a few .MeV the value of p can be on the 5. FEL equations
:7der cf 1. In the VU:V region with electron energies of

m.eial hundred MeV. p is on the order of i0- and In the remainder of this paper %%e %ill di.cu.,s the
"ne expect an energy transfer from the beam to the high gain regime and the SASE mode of operation of an

"at r:aton on the order of a few parts in a thousand. FEL. Follo u n the ".ork of other authors [16.171 %%e
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,,eitc the FEL equatuon., ,,,ln th" phc .nd enand a and %rite the FEL equa tion- a..121

elcctron .ariable' and use the Sl r.ina Limpitude 1
.nd phai.e apprjx\imaton for the radiatii Ifield. The,e - ji-- .-- " -=1.2. . (1 a)
,'quatt,,n. can be rntten in a %er z ,eneral form inlud- - P F"
ine the effectN of space-charge fields and higher
j.Armnic, of the radiation field [131. To impltfv our - - - - c.. (lib)

d tuu, iwn %%.,: neglect the c terms and use the results of

ref. (IS! to etaluate their effects. Our notations are the 4 / e (
followint: : i6 the electron beam and electromaentetic , + (llc)

, direction of propagation: x and v are the trans-
* er, :Nordinate,: B,. iS the undulator maznetic field with

%e "se a ,eh=a1 undulator tur simptieityi and \,.. \., =/. (Il d)

are its period and length in number of periods respec-
tt.l'.: X is the wavelength of the radiation field: - is and -1 the detuning parameter

;he clectro'n energy in units of mn.-: !.3 I i the -(I yi K )/2y. (lie)
Ionzitudinal electron velocity and _ K., y the ampli-
tude of the transverse velocity: the electron phase rei- The dot indicates differentiation with retpect to The

tie to the electromagnetic wave. o. is related to : and t angular brackets indicate an average over the particle

b%. o= 2ir:/X - 2t(: - ct)/. the resonant energy yt initial phases. i.e. ( ) -(I/N) where .V is the num-

is related to Xo. X and K by -!z -X(1 - K : the ber of particles.
und,'lator frequency F is , .:/,..: the amoli- From these equations we can show that the quantity:

tude. E0 . and phase. 0.. of the radiation field are H = (F> + A12)
combined to .,ield a complex amplitude a = i E,,eo . is an invariant. In terms of laboratory variables this can

To wnte the FEL equations it is convenient to use a be written as
set of normalized variables and introduce some quanti-
ties to characterize the beam properties [12.13. We will -=c E _ constant. (13)
use the relativistic beam plasma frequency already in- ncny)o-
troduced in sect. 3. which for a beam with energy which is seen to be the conservation of energy relation
dibper~ion is ii'en by for the electron beam-radiation field system. It is also

convenient, using eq. (9). to rewrite eq. (12) as

0= p( 4: ;A (14)

%%here -. , is the average value of the initial electron -(. . )
energy: ,e introduce also the quantities which relates directly the change in the field amplitude

'3 A to the average change in electron energy. One can see
" P(5) from eq. (14) that. assuming 1,,)i K ;.4 1. the quantity4 i :.jJ p I A 12 measures the efficiency of energ. transfer from

and the electron beam to the radiation field.
In integrating the FEL equations the maximum time

. t (6) is defined by the undulator length t .,. A Ic. In
• /) terms of the scaled time r this become.

and a normalized tme r.,, - 4 YR (15)

7-5. - )wt. (7)

Lsing these definitions we can contruc: a ,-t of 6. The FEL collectve inrabili and coherent radiation

dimensionless %ariables generation

S- O . - (8) The system of eqs. (tla)-(llc) has been discussed in

F !. , (9) ref. (121 where it hab been shown that for 6 < S, - 1.9

P ,'' the system is unstable and the field amplitude .4 grows
Sexp(i I) exponentiall%.. Both the radiation field and the beam

A = " (10) bunching grow exponentially. We can characterize the
[4imc:&.onopl," bunching by the parameter h -l(e") The nonlinear

1. THEORY
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rercime and taturailon chat ,"ollow IF, initial \poncnti-l
.rouch ha~e ao been -tudied in the,, papers. .

In thib paper N.e eatit to dicub, a collectiek un~ta- -

'5ic .. tem using the parameters :hat apply to an ef -
crin eam obtained from a storage nng. ,

e a,,ume that the initial field amplitude i., zero M -

and ,e introduce an initial noise in the electron phae , L
distribution o that the initial value of b -! 'c'- is L
I. ..V..V N,,being the number of electrons in one (C) _ _±_---.-_. -
radiation wavelenath. In fit. I we show the ev6olution of -- ,
• anplitude 1.4; %ersus-.. for different alue, of -

.he initial electron beam rms energy spread. a,,. and for - -'

3 = 0. One can see that for a,, -4z p the field amplitude
'A reazhes a value of the order of uniLy. so that. from r 10
e.. (14). we have an energy transfer efficienc. of the
order of p. i.e.. at the peak of 1A 1 e have transferred a Fig. 2. Plot of a, versus r for b -9.1 :< 10--. p 3x 10- and
Fraction p of the beam energy to the radiation field. everal ,,alues of the initial rrrb energy spread. a,,, 0.1 p. 0.75

Fig. Z shows the evolution of the rms beam energy p and P. labeled a. b and c. respecwc. ly.

.pread for the same values of qo* as in fis. 1. One can
see that when the field peaks the energy spread becomes
on :,he order of P provided q,, < p. 3) after tra crsing the undulator %, e have IA i 1.

The time needed to reach the peak can be seen from b =1 and t, - p.
5 zs. I and 1 to be = 0. Assuming -: we can see
rom eq. (1.) that to reach the peak we need an undula-
cor with a number of periods ; , 1/p. 7. The electron beam-undulator s.stem

Let us summarize the results of this section:
i the electron beam. undulator magnet, radiation As we wish to discuss the operation of an FEL over

ield v-stem is unstable, if 8 < S,,. and both the field a large wavelength range (30-2000 A) we will consider
amoutude. I A!. and the beam bunching. b. will grow operating the storage ring at enerves ranging from
exponentially up to a saturation level %%here 1.41 - I and 300-500 MeV. In addition we will consider 3 undulator

designs. a 5 mm period undulator for A in the range of
," if the system initial conditions are 1.4' 0. b,, 30-100 A. a I cm period undulator for X in the range of

Iete.-mined by noise. o,, < p. the electron beam will 100-2j0 A and one with X., = 2.5 cm for X in the range
A. ;ransfer a fraction p of its energy in a number of of 500-2000 A.

undulator periods of the order of / p. To calculate the undulator properties we assume it to
be of the h>bnd (permanent magnet and iron) type and
calculate the magnetic field from 1191

Bo -3.33.xp 5.47 .S ) T. (16)

4. where Aq and g are the period and the gap. respec-
tively. A complete Listing of the undulator data can be

" found in table 1. The output radiation %%avelengths for
., the 3 undulators are signified by C's in figs. 5a-5c.

The electron beam described in table 2 can be ob-
tained in a storage ring. as we discussed in sect. 5.

-7 " However. if we tried to instail the undulators described

* Table I
*U ndulator magnets

O10 Period. A), (cm? 0.5 1.0 2.5,_ Gap. it (cm) 0.1 0.2 0.3

F. 1. Plot of IAI versus for b,9.1x10 - 3 . p3xl0 - 1 Pump strength. Bo iT) 1.2 1.2 1.2
and ieeral values of the inital rms energy spread., ,,- 0.l P Undulator parameter. K 0.56 1.12. 2.80
"p,5 p and p. labeled a. b and c. respectively.
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T.,b!
El :,nbe_,r p arnmetcr, int the ,r%)x e,', ti lon

En.-.:z% E i McV) 5J CO L.,. ,

Bcta honzontl. 3, i 3.00 2
Bct.i %erhtia. 0, (m) I0(1 '

Cou~~kn .. X 001 '",.'
rms hontwntal beam radius. ,, (m) I.OIE-04 E
m henzontal angular spread, a, i cad) 3.37E - ". 05

rms ertical angular spread. a: irad) 5.3I E - 06 .. E-.9E - 0
rm i % ertiai beam radius. a (m) 5.S I E - 06 :.A. E 6 3.49E - 06

in table I directly in the ing such that the electron - .,,SS

beam .ould pass through the imall aperture of the S E 7 ' 1E-T

undulator on each revolution, it would become impossi- - '.'

ble to operate the ring. The small aperature (gap) of the

undulator would result in %antshing small beam life-

• times de to collisions with undulator walls. The mini-
mum allowable gap depends on both the ring and
undulawr parameters and must be determined expen-
n'eitalk.

For this reason we propose to install the undulator
in a ring bypass. as shown in fig. 3. The electron beam a -
would normally circulate in the ring. where the effect of
synchrotron radiation damping would produce the beam Fig. 3. Sketh '-:,rage ring and b.pas ,ectun

properties of table 2. About once per damping time. of
the order of 50 ms for the storage ring illustrated in
table S. the beam is taken into the bspass and focused left there -cr tine long enough for synchrotron radia-
in the undulator by -a special quadrupole triplet. In tion damping to bnng its characteristics back to their
guing through the undulator the electron beam produces starting %aiue. A more detailed discussion of the storage

* the radiation. its energ. is decreased by PET and its ring a ,d syp's sstem is gzi.en in the next section.
energ. pread increases from its initial value to about p. As the eectron beam circulates in the nng iLrper-
The beam is then taken back into the storage ring and forms hoth ,.--i and horizontal oscillations, the so-

Table 3
Sioriac ring parameters

S Fnerz.. F 1MeV) 500 466%, 300
Gamma. -y 97S 73 SS7
Bendin radius. R, (mP 4 4 4
.\era radius. R , (m ) 15 15 1;

Number of achromatic hend,. l 6 6

RF soltage. V (MV) I I
Harmonc number. h 100 106 100
Number of bunches I I
Aserage current. Io (A) 0.10 0.1) 0.10
Electron number. S 1.97-11 1.9-E - I 1.971E I
S: nchrenous phase. a, t.38E-03 4.o'E I E -.- i

Momentum compaction. a 1.22E - 02 1. .2E-02
Honzontal emittance. i, (mrad) 341E - 09 2.1, E - ' 1.23E - OY
Vertical emittance, #, (mrad) 3.38E - I I :..' - I I.E- II

* Zero current bunch length. a,, (mS 1.99E - 03 1.4'E - 1S 9.:4E - 04
Zero ,urrent energy spread. a,. 2.14E - 04 1.E - 129E - 04
Snchrotron tune, , I 97E-02 Z._',E-C-2 2.4E -02
S)nchrotron radiation loss. 1,;, (.IeV) 1.38E-03 5.67E -,,4 1.7qE-0.4
R F acceptance. eit 3.23E - 02 3 61E - 02 4.17E - 02

I. THEORY
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un~ J .h ,:.._: E ;: n- m ih:ude arid -,mod of -. :R

the -taron m,.- b. .e a .a.ur- of me "o.-u'e n = "(1)
pro.cer'ie: of " e . ' E:c ce. Together , ith the
emt .. eC. . ,kLc.' t3 thme area in tne po:uton-aneular = 7.7 - /

.n a: pa,e i %ich the beam i, contaied. t 7 X 10- i (mrad). (19)

,.*[- :he beta iun,.tcn., d-t.-rnt_ ehe beam i.e.. th% t here RB. R_ are the bending and aserage ring radii
).,. bem he:_LO'. 'H ,,(.3id The choice of the beta,-z 'ucuor n t~ e b ,.... he choe of the eta and vt is the number of achromatic bends. An

tunction, in the- b%a.i~ ib det;:rmined by the require-
ment " achromatic bend. typically consists of two dipole mug-

ne -- - aCs possible. wich requires net, with a horizontally focusing quadrupole in be-
.- ! 3,. 2,.- '.:h¢ .. -atinL the energy spread c n- it:e~n, and I, jeined to locu; 6ii the entering :iec-

I di:l-on a. u- . In e;,':,t 1kr a bC.LM M,, h nonzero Eran,-
,.tree e;'r', . ,it a ncesso wth nonzero thne- trons. regardless of energy, to the same point on excit-
.rel em~uances Prt.. in ;!f~tc~i~e n sard ton abd to'0 th ing the bend. The '6ertical enuttance is determined b,

real enerv. :prea,.ti eff~e e spread gven by [20J the coupling bet%een horizontal and vertical oscillation

due to magnet misalignment. ,. = XEH.
7Z.. . .. . . f .. . .. . At zero or small current the rms energy 5pread and

-- the bunch length are determined by s',nchrotron radia-

: tion and are v.en by 12217x.:)  I ~ ~(7) " .._(o
: 17,0 ) 4.38 x 10 '

;n %rna :alos .4e .,li na;,e sure that the janditton (2R1)
< , ai'ays ;.a:fie . %o = -. 0.

In the ca.s-, ,at 7-t Al c,:.nsidcr in the next section
the undulacor enzth ,aric bev't.een twvo and three me- %%here h - , is the ring s,,nchrotron oscillation:!rs and ,s de.e rmi.aec b,. i.e condition ., = ;,p. This tune. At large currents the microwaie instability [231.

.neth i, 2, ,c, nt 'ti our assumptir.n on the caused by the beam interaction with the broad-band
t'ta-tunctions. high frequenc :,torage ring impedance can icrease the

energy spread. a,. and the bunch length. ap. An increase
of a reduces the value of p while at the same time C,

8. The electron srorao.oe ring and bpas% sectiun increases and the condition a, Z p can be violated.
To evaluate this effect we use the approximate condi-

The .:ra! e 4.I:i .,t - .e consider i z4rmilr to those tion 123
; d a, s':nc:.trotron r.dt-aon sourcez. for intance the Pl Z(n) R

ational S'.nchrotr,. g:-mit Source VLV nng [151. Its el 2.. 0 ao, for n > -. (22)
main cha'actensuc; ar '. ,.en in table 3. a

Since ".e wZ.tt to m,-,ize the electron denitv to where 11 is the peak current, related to the axera.e
obtam a :arze aiue c.' o in the u.'.dulator. %%e have bunch current. ,. hv
chosen . .n des .t ohich rminimizes the beam emit-
tance and the bu.ch WneL. When the beam enters the IP = (2") -- 1 (23)

b. :ass setion it u.deroes addtional focusing to in-
crease o. as ;-h':.&-. : tab!e . and I Z(Onl,, is the effective loigitudinal coupling

The nn h_.- :'xo Lu - icng -trai.ht :ect:on ,. one impedance of the nng.
used for the raiec,e=,. s.stem and one for the From eqs. (21-(23 an expressn for the microwave

bvp a,'. ttci'z na.ets. he arcs joining the two long instability Ilimted hunch length and energy spread can
straights each ra.e tree equal periods. Each period hab be obtained
: dipole r-anets -A'tn a ,.cusing quadrupole between
them anc t-.vo , rad:aie &uiet, on :he extemal = -/ I 1241
sde.. The rng enerr. discersion is controlled by the gs-- "
central qaaraFole and ii nortzero onl. in the dipoles h
and in the rez on becmen t :em. 0, a -o. (25)

The momenum cmVcItion. a -id ElE) '(dli/'l).
relates the chan.t Li orbit length to the relatie energy The ztorage ring coupling impedance is determined
de,.ation from .he d:e_,in energy E, of the ring. For a b% the sacuum chamber geometr. and b, the hending
rng with this mazf.etic ,tructure the momentum com- radius in the curved section [23.241 and is a quantity
paction a. and t:'e honzontal ermttance. C.. are ap- difficult to calculate 'a prori ... Hove~er in modern

0-8
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4 the coherent heczron tunc -hit, he nialler h .: the

.-r. In.th and pe-k ure:uc s,nchro'ron tun [23!

-l' Ai~ . .¢,ouphnflg iipcdan jl )  U I ' I,"

Scurrent. I, 1AS - ith the trAnscers coupling impcda.cc ZT. , e'alu tcd

from the Longitudinal impedance a [231

storage ins value, of the order of I f! have been ZT.,( " -

,,h:.Lin-d. Since thi, quan tir. i, %erv ir ..-ortant in de-
irr inmig the performance of our ,:sczcrr .c h,e ch,- The rine described in tahl 3 -ill he tret r,m

i en to u.e in our calculations three values of Zin) n . transverse instabilit% probcmi proided the tffeti,,e

i.e. 01. 1 and 10 2. Let us notice that a 10 . coupling impedance can be kept on the order I f? or les .

impedance is large. and i; ai pessimisic asumption. As a final measure of the ring', featihility %%e corn-
.shfie a I f? value is realitc and hat, been alread. pute the Tou.chek lifecime (251r- The Touchek life-

o't.ined. On the other hand. a 0.1 Q ,_.Iue %ould time is the time in which losses due to Coulumb colli-

require a breakthrough in storage nay design. sions between electron, in the same bunch have reduced

*The microwave instability Limited bunch lengths and the beam current to half of it.; initial value. For the
peak currents. which depend on the value oif the cou- range of ring parameters given in table 3 , > I h.
piing impedance but not he energy. are siven in table A.
The bunch length. are tptcall. a fe, cenrtmeters and 9. Results
the peak currents; are in the iC0--0 A range.

To test the beam for cabiity against transver. In figs. 4a-4c we plot the FEL parameter, p. and the

coherent oscillations %%e ha e used the conditions that microwave instability limited energy spread. a,. versus

I 7C-to) I 'a) let

"IN,

~401- 4~

:3.0 \

30-- -1""3

o .- -. F " \ I "\

I ," I- ,, 1 7,C6IC

300 400 500 3-0 400 500 300 400 5CO
q ENERGY (MoV) EN'EPGY (M*V) ENERGY (ali)

Fig. 4 Plots of the FEL parameter. p. and the rruohae instability litied ms energ ipread. a,. er,, enerp' for ia) X. mm.

(h) X.. - I cm and 1.) ,\. - .3 cm. The o aluds are iLnifred b% a 3 and the a, values are Siaen h a Z. Each fI'ure displa%. the p
ind Y, valuc .for 1 %alues of Z:,, -0.1. 1.0 and 10 .A Zolid line corresponds to Z - 0.1 Q. a dashed line to Z 12 and - to

Z 10 2. The lins are not fitted o the points the. are lravn 5imply to indicate trend.
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F' L 5. ?ot of the Output ':;atllenjth N and the estimated peak power output versus energy for jai A,, - 5 mm. (b) X,, -I cm ,and (c)

; m.5 T, A a'uce .re ite-fied by 2:-- and the power values are given by a 0. For the power curves, a solid line corresponds,
: :. ? -, , ; ! . a - ."i , Z - I f2 and, I. C' , Z - !k 2-.

beam energ, for the - mm. 1 cm and 2.5 cm impedance. For a value of the order of 1 .Q one cai
.',..ators. respecively. Reca7llng thaf the limit on the obtain peak powers on the order of 500 MW down to

a:- .4. b:e energy spread is a, s p it can be seen from wavelengths of about 500 A and 50 MW to SO A the
-... "a that if t-e nng impedance can be kept at or power decreases sharply at lower wavelength. 1 it should

,,. 0.1 !2 one can txpect to obtaia high intensity become possible to reduce I Z(a)/nI to 0.1 Q one could
* c--r soft-X-rays in the range of 30-85 A. From get peak powers on the order-of 20 MW down to 30 .
,. .-,. .~and 4c it can be seen that the energy'spread in One should also remember that in this paper we have

=7s wil not Pose any problems for the jeneration concentrated our attention on the first harmonic pro-
o:f i-:enie radiation in the range of 85-2000 A. duction only: however. from the results of ref. [1S]. we

F'p. 3a-3c are -!otus of the peak power versus en- know that the system will also produce higher harmon-
'r;. .qr the three undulator designs. The peak power is ics and this can shift down the lower limit for soft X-ray
_: culat-d assurmg that the radiation pulse length is production.
e.i "o the electron bunch length. We want to emphasize that the results presented here

are preliminary. and that one might improve the system
performance by optimizing other ring parameters such

10. Conclusions as the momentum compaction or the radiofrequency
voltage and frequency. To obtain a more complete

. :he sy, stem d.--ribed. an electron storage ring understanding of the system one should investigate dif-
, art unduiator :n a ipecial b pass section. we can fraction effects on the radiation due to the finite beam

-. I h.;n intensit, coherent radiation by sending the radius and consider a three dimensional calculation
-.t-n :houth the undulator and using the FEL collec- taking into account the electron desity vanation in
ne :nstability to produce radiation. Compared to other both the transverse and longitudinal direction.

* ,'ezts, such as an FEL osciUator or a transverse
S:;::,:-1 :d'st:on. :-is s.stem h33 the advantage that it This work is supported by the US Dcpartment of En-
je' not require ,i-.ors to form an optical cavity or an ergy.
in-ut Lih power :.str to bunch the electron beam. On
J.e athtr hand. b% its very nature, this system can only
pr~d:xe .ib intensi.- short radiation pulses with a Reference

r-e'ion rate of the order of 10 Hz. [II A presentation of many ot these results appear in thee
The itorage ring needed to operate the system is Proceedinp 119S4 FEL Cont.. Italy) Nuel. Intr. and

cha:ctenzed b% a small transverse enuttance. The other Meth. A237 (1.2) 1985).
:Tort,-t nng parameter is the !onptudinal coupling (21 L.R. Elias et al.. Phys. Rev Lett. 36 (1976) 717.
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